Cuantas cifras decimales tienen los números irracionales
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
Número irracional
En matemáticas, un número irracional es un número que no puede ser expresado como una fracción \frac{m}{n}, donde m y n son enteros y n es diferente de cero. Es cualquier número real que no es racional.
Índice [ocultar]
1 Historia
2 Notación
3 Clasificación
4 Propiedades
5 Véase también
6 Referencias y citas
7 Enlaces externos
Historia[editar]
Dado que en la práctica de medir la longitud de un segmento de recta solo puede producir como resultado un número fraccionario, en un inicio, los griegos identificaron los números con las longitudes de los segmentos de recta.1 Al identificar del modo mencionado surge la necesidad de considerar una clase de números más amplia que la de los números fraccionarios. Se atribuye a Pitágoras de Samos (580- 500a. C.) y su escuela el descubrimiento de la existencia de segmentos de recta inconmensurables con respecto a un segmento que se toma como unidad en un sistema de medición. Pues, existen segmentos de recta cuya longitud medida en este sistema no es un número fraccionario.2
Por ejemplo, en un cuadrado, la diagonal de este es inconmensurable con respecto a sus lados. Este hecho ocasionó una convulsión en el mundo científico antiguo. Provocó una ruptura entre la geometría y la aritmética de aquella época, ya que esta última, por entonces, se sustentaba en la teoría de la proporcionalidad, la cual solo se aplica a magnitudes conmensurables.