Matemáticas, pregunta formulada por fortniteps114, hace 1 año

Cuando María y su familia se mudan a su nueva casa, que tiene un amplio jardín cuadrado, ella decide hacer algunas modificaciones y arreglos en su nuevo hogar. Considerando “x” el lado del jardín de forma cuadrada; Martha desea hacer una vereda en forma de L, tal como muestra la imagen. Si toda la vereda tiene un ancho “a”, ¿cuál es el área que ahora queda destinada para el jardín? Exprésela de tres maneras.

Respuestas a la pregunta

Contestado por carbajalhelen
22

El área destinada para el jardín al incorporar la vereda es:

Aj = x² - 2ax

Aj = x(x - 2a)

Aj = (x-a)²

Explicación paso a paso:

Datos;

  • Jardin cuadrado
  • Considerando “x” el lado del jardín de forma cuadrada;
  • Martha desea hacer una vereda en forma de L, tal como muestra la imagen. Si toda la vereda tiene un ancho “a”

¿cuál es el área que ahora queda destinada para el jardín?

Si el área de un cuadrado es;

A = x²

Al restarle el área de la vereda con forma de L:

Av = (x)(a)+(x)(a)= 2ax

El área del jardín se puede expresar;

Aj = x² - 2ax

ó

Aj = x(x - 2a)

ó

Aj = (x-a)²

Adjuntos:
Contestado por elgaaadelosgaaa
2

Respuesta:

El área destinada para el jardín al incorporar la vereda es:

Aj = x² - 2ax

Aj = x(x - 2a)

Aj = (x-a)²

Explicación paso a paso:

Datos;

Jardin cuadrado

Considerando “x” el lado del jardín de forma cuadrada;

Martha desea hacer una vereda en forma de L, tal como muestra la imagen. Si toda la vereda tiene un ancho “a”

¿cuál es el área que ahora queda destinada para el jardín?

Si el área de un cuadrado es;

A = x²

Al restarle el área de la vereda con forma de L:

Av = (x)(a)+(x)(a)= 2ax

El área del jardín se puede expresar;

Aj = x² - 2ax

ó

Aj = x(x - 2a)

ó

Aj = (x-a)²

Otras preguntas