Matemáticas, pregunta formulada por romeroaltamiranog916, hace 15 días

¿Cuáles son los valores de x de la siguiente ecuación? 2x² - 10x + 12 = 0
ayuda Aa​

Respuestas a la pregunta

Contestado por messiaschoquehuayta
0

Respuesta:

seria haser el metodo rufini

Contestado por Yay78
0

Explicación paso a paso:

                                                  Datos:

¿Cuáles son los valores de "x" de la siguiente función?:

                                           2x^2-10x+12=0

                                              Resolución:

                                          2x^2-10x+12=0

                     Dividimos por "2" para poder dejar a "x^2" sola:

                                         \frac{2x^2}{2} -\frac{10x}{2} +\frac{12}{2} =\frac{0}{2}

                                          x^2-5x+6=0

                                         Encontramos "x":
                                         x^2-5x=-6

                                   x^2-5x+\frac{25}{4} -\frac{25}{4} =-6

                                   (x-\frac{5}{2} )^2=-6+\frac{25}{4}

                                   (x-\frac{5}{2} )^2=\frac{-6*4+25}{4}

                                  (x-\frac{5}{2} )^2=\frac{-24+25}{4}

                                       (x-\frac{5}{2} )^2=\frac{1}{4}

                                      \sqrt{(x-\frac{5}{2})^2 } =\sqrt{\frac{1}{4} }

                                         |x-\frac{5}{2} |=\frac{1}{2}  

                                    Sacamos raíces:

           x_1 = \frac{1}{2} +\frac{5}{2}                                      x_2=-\frac{1}{2} +\frac{5}{2}                            

          x_1=\frac{6}{2}                                              x_2=\frac{4}{2}

          x_1=3                                               x_2= 2

                                         Solución:

                             x_1 = 3                    x_2 = 2

Otras preguntas