Matemáticas, pregunta formulada por RURAL1966, hace 1 año

cuales son los dos numeros que su suma es de 36 y la suma de sus cuadrados es igual a 666

Respuestas a la pregunta

Contestado por aloxx
3

x + y = 36

x = 36 - y

 {x}^{2}  +  {y}^{2}  = 666

 {(36 - y)}^{2}  +  {y}^{2}  = 666

1296 - 72y + {y}^{2} +  {y}^{2}   = 666

2 {y}^{2}  - 72y + 630 = 0

Ecuación cuadrática:

  \frac{72 +  \sqrt{( { - 72) }^{2} - 4 \times 2 \times630  } }{ 2 \times 2}

y1 = 21

y2 = 15

x1 = 15

x2 = 21

Los números son 15 y 21.

Contestado por justshapeybeatboi
0

x + y = 36

x = 36 - y

{x}^{2}  +  {y}^{2}  = 666

{(36 - y)}^{2}  +  {y}^{2}  = 666

1296 - 72y + {y}^{2} +  {y}^{2}   = 666

2 {y}^{2}  - 72y + 630 = 0

Ecuación cuadrática:

 \frac{72 +  \sqrt{( { - 72) }^{2} - 4 \times 2 \times630  } }{ 2 \times 2}  

y1 = 21

y2 = 15

x1 = 15

x2 = 21

Los números son 15 y 21.

Otras preguntas