Cuáles son las razones trigonométricas que son positivas en el cuarto cuadrante?
Respuestas a la pregunta
Respuesta:
En el primer cuadrante, vemos que: el cateto adyacente se ubica sobre el eje x, así que lo denominaremos "x"; al cateto opuesto, que se ubica sobre el eje y, lo llamaremos "y". La hipotenusa, que es el radio de la circunferencia, la designaremos "r".
Ya que "x", "y", "r", son positivas, entonces, Todas las funciones trigonométricas en el primer cuadrante son positivas. SEN : +
COS: +
TAN: +
CSN: +
SEC: +
COT: +
En el segundo cuadrante, el cateto adyacente cae sobre el eje negativo de las x, mientras que el cateto opuesto sigue sobre el ele positivo de las y . El radio (la hipotenusa) sigue siendo positiva en todos los cuadrantes. Por lo tanto: el Coseno, la Tangente y sus inversas (Secante y Cotangente) tienen resultados negativos. SEN : +
COS : -
TAN: -
CSN: +
SEC: -
COT: -
En el tercer cuadrante, tanto el cateto adyacente como el cateto opuesto tienen sus signos negativos, ya que caen sobre la parte negativa de los ejes. En este caso la Tangente (y su inversa, la Cotangente) resultan positivas (- : - = +) SEN : -
COS : -
TAN: +
CSN: -
SEC: -
COT: +
En el cuarto cuadrante, el cateto adyacente vuelve a estar sobre el eje positivo de las x, mientras que el cateto opuesto sigue sobre el eje negativo de las y. En este caso, las únicas funciones cuyo resultado será positivo son el Coseno y la Secante
Respuesta:
el cateto adyacente vulve a estar sobre el eje positivo de las x , mientras que el cateto opuesto sigue sobre el eje negativo a las Y en las últimas funciones cuyo el resultado sea positivo sonel coseno y la sacante