Matemáticas, pregunta formulada por yairemistorres365, hace 9 meses

Cual es la respuesta de a^3-b^2+10(-5),donde a=5 y b=6

Respuestas a la pregunta

Contestado por luisallach4
2

o:

Escribe de todas las formas posibles la ecuación de la recta que pasa por los puntos A(1, 2) y B(-2, 5).

 

Solución:

 

Tenemos que la recta para por los puntos A(1,2) y B(-2,5). Por lo tanto, el vector que une estos dos puntos es:

 

\overrightarrow{AB}=(-3,3)

 

Con estos datos ya podemos obtener las ecuaciones de la recta (las fórmulas se pueden consultar en nuestro artículo "Resumen de ecuaciones de la recta").

 

Ecuación de la recta que pasa por 2 puntos:

 

\displaystyle \frac{x-1}{-2-1}=\frac{y-2}{5-2}

 

Ecuación vectorial:

 

( x,y )=(1,2)+k\cdot (-3,3)

 

Ecuaciones paramétricas:

 

\left\{\begin{matrix} x=1-3k\\ y=2+3k \end{matrix}\right

 

Ecuación continua:

 

\cfrac{x-1}{-3}=\cfrac{y-2}{3}

 

Ecuación general:

 

x+y-3=0

 

Ecuación explícita:

 

y=-x+3

 

Ecuación punto-pendiente:

 

y-2=-1\cdot (x-1)Escribe de todas las formas posibles la ecuación de la recta que pasa por los puntos A(1, 2) y B(-2, 5).

 

Solución:

 

Tenemos que la recta para por los puntos A(1,2) y B(-2,5). Por lo tanto, el vector que une estos dos puntos es:

 

\overrightarrow{AB}=(-3,3)

 

Con estos datos ya podemos obtener las ecuaciones de la recta (las fórmulas se pueden consultar en nuestro artículo "Resumen de ecuaciones de la recta").

 

Ecuación de la recta que pasa por 2 puntos:

 

\displaystyle \frac{x-1}{-2-1}=\frac{y-2}{5-2}

 

Ecuación vectorial:

 

( x,y )=(1,2)+k\cdot (-3,3)

 

Ecuaciones paramétricas:

 

\left\{\begin{matrix} x=1-3k\\ y=2+3k \end{matrix}\right

 

Ecuación continua:

 

\cfrac{x-1}{-3}=\cfrac{y-2}{3}

 

Ecuación general:

 

x+y-3=0

 

Ecuación explícita:

 

y=-x+3

 

Ecuación punto-pendiente:

 

y-2=-1\cdot (x-1)


luisallach4: al menos intente
Otras preguntas