¿Cuál es la función matemática que permite representar en papel una onda?
Respuestas a la pregunta
Los matemáticos usan la función seno (Sin) para expresar la forma de una onda. La ecuación matemática que representa la onda más simple es la siguiente:
y = Seno(x)
Esta ecuación describe cómo una onda podría ser trazada en un gráfico, en el que y (el valor de la coordenada vertical en el gráfico) es una función del seno del número x (la coordenada horizontal).
Respuesta:
Explicación:
Ondas y círculos
Sí, es posible ver las ondas matemáticamente, ya que la forma de una onda se repite a intervalos constantes a lo largo del tiempo y la distancia. Este comportamiento refleja la repeticion del círculo. Imagine que dibuja un círculo en un papel. Ahora, haga de cuenta que dibuja la misma forma mientras que, despacio, su amiga retira el papel de debajo del lápiz. La línea que hubiera dibujado toma la forma de una onda. Para poder apreciar mejor esta idea, vaya al enlace "Del círculo a la onda" en la sección Experimento! en el menú de la derecha. Una rotación alrededor del círculo, completa un ciclo de subida y bajada de la onda, tal como se ve en el dibujo de abajo.
circle on cartesian 2
Figura 1: Círculo sobre plano cartesiano.
Los matemáticos usan la función seno (Sin) para expresar la forma de una onda. La ecuación matemática que representa la onda más simple es la siguiente:
y = Seno(x)
Esta ecuación describe cómo una onda podría ser trazada en un gráfico, en el que y (el valor de la coordenada vertical en el gráfico) es una función del seno del número x (la coordenada horizontal).
La función seno es una de las proporciones trigonométricas calculadas, en un principio, por el astrónomo Hipparchus de Nicea, en el siglo dos A.C., cuando trataba de entender el movimiento de las estrellas y de la luna en el cielo nocturno. Hace más de 2000 años, cuando Hipparchus empezó a estudiar astronomía, el movimiento de los objetos en el cielo era un misterio. Hipparchus sabía que las estrellas y la luna tendían a atravesar el cielo nocturno de una manera semi-circular. Por consiguiente, pensaba que entender la forma de un círculo era importante para entender la astronomía. Hipparchus empezó a observar que había una relación entre el radio de un círculo, el ángulo central de un triángulo de ese círculo y la longitud del arco de ese triángulo. Si se sabían dos de cualquiera de estos valores, se podía calcular el tercer valor. Con el tiempo, se supo que esta relación también era aplicable a los triángulos rectangulares. Conociendo la medida de un ángulo de un triángulo rectangular, se puede calcular la proporción de los lados del triángulo. El tamaño exacto del triángulo varía, pero la proporción de la longitud de los lados está definida por el tamaño de los ángulos. La relación específica entre la medida del ángulo y los lados del triángulo son lo que se denominan las funciones. Las tres funciones principales son:
Seno A = opuesto/hipotenusa
Coseno A = adyacente/hipotenusa
Tangente A = opuesto/adyacente