cuál es la constante de integración de:
Int: 2x-5x^2+3x^3 / x^3\dx
Respuestas a la pregunta
Contestado por
0
2x
-----------------------
x^2-2x-3)2x^3-4x^2-x-3
.........2x^3-4x^2-6x
---------- ------ ----
....... ..... ....5x-3
2x + (5x-3) / (x^2-2x-3)
= 2x + (5x-3) /(x-3)(x+1)
(5x-3)/(x-3)(x+1) = A/(x-3) + B/(x+1)
multiply both sides by (x-3)(x+1)
5x-3 = A(x+1) + B(x-3)
let x=-1
-8 = -4B
B = 2
Let x=3
12 = 4A
A=3
A=3; B= 2
(5x-3)/(x-3)(x+1) = 3/(x-3) + 2/(x+1)
2x + (5x-3) / (x^2-2x-3) = 2x + 3/(x-3) + 2/(x+1)
∫[2x + (5x-3) / (x^2-2x-3)] dx = ∫ 2x dx + 3 ∫ dx/(x-3) + 2 ∫ dx/(x+1)
= 2 (1/2) x^2 + 3 ln(x-3) + 2 ln(x+1)
= x^2 + 3 ln(x-3) + 2 ln(x+1) + Ccidyah · 2 years ago
-----------------------
x^2-2x-3)2x^3-4x^2-x-3
.........2x^3-4x^2-6x
---------- ------ ----
....... ..... ....5x-3
2x + (5x-3) / (x^2-2x-3)
= 2x + (5x-3) /(x-3)(x+1)
(5x-3)/(x-3)(x+1) = A/(x-3) + B/(x+1)
multiply both sides by (x-3)(x+1)
5x-3 = A(x+1) + B(x-3)
let x=-1
-8 = -4B
B = 2
Let x=3
12 = 4A
A=3
A=3; B= 2
(5x-3)/(x-3)(x+1) = 3/(x-3) + 2/(x+1)
2x + (5x-3) / (x^2-2x-3) = 2x + 3/(x-3) + 2/(x+1)
∫[2x + (5x-3) / (x^2-2x-3)] dx = ∫ 2x dx + 3 ∫ dx/(x-3) + 2 ∫ dx/(x+1)
= 2 (1/2) x^2 + 3 ln(x-3) + 2 ln(x+1)
= x^2 + 3 ln(x-3) + 2 ln(x+1) + Ccidyah · 2 years ago
Otras preguntas