¿cuál es el quinto término de la sucesión 2.5,4,5.5?
Respuestas a la pregunta
Respuesta:El término general de una sucesión es un criterio que nos permite determinar cualquier término de la sucesión, se representa por a_{n}.
1 Comprobar si la sucesión 8,3,-2,-7,-12,... es una progresión aritmética.
3-8=-5
-2-3=-5
-7-(-2)=-5
-12-(-7)=-5
d=-5
a_{n}=8+(n-1)(-5)=8-5n+5=-5n+13
2 Comprobar si la sucesión 3,6,12,24,48,... es una progresión geométrica.
6\div 3=2
12\div 6=2
24\div 12=2
48\div 24=2
r=2
a_{n}=3\cdot 2^{n-1}
3 Comprobar si los términos de la sucesión 4,9,16,25,36,49,... son cuadrados perfectos.
2^{2},3^{2},4^{2},5^{2},6^{2},7^{2},...
Observamos que las bases están en progresión aritmética, siendo d=1, y el exponente es constante
b_{n}=2+(n-1)\cdot 1=2+n-1=n+1
Por lo que el término general es:
a_{n}=(n+1)^{2}
También nos podemos encontrar con sucesiones cuyos términos son números próximos a cuadrados perfectos
5,10,17,26,37,50,...
2^{2}+1,3^{2}+1,4^{2}+1,5^{2}+1,6^{2}+1,7^{2}+1,...
Hallamos el término general como vimos en el ejemplo anterior y le sumamos 1.
a_{n}=(n+1)^{2}+1
6,11,18,27,38,51,...
2^{2}+2,3^{2}+2,4^{2}+2,5^{2}+2,6^{2}+2,7^{2}+2,...
a_{n}=(n+1)^{2}+2
3,8,15,24,35,48,...
2^{2}-1,3^{2}-1,4^{2}-1,5^{2}-1,6^{2}-1,7^{2}-1,...
a_{n}=(n+1)^{2}-1
2,7,14,23,34,47,...
2^{2}-2,3^{2}-2,4^{2}-2,5^{2}-2,6^{2}-2,7^{2}-2,...
a_{n}=(n+1)^{2}-2
Explicación paso a paso:
El quinto término de la sucesión aritmética es igual a 8.5
Una progresión aritmética es una sucesión en la que si restamos dos términos consecutivos de la misma esta diferencia es constante, es decir cada termino se obtiene sumando el anterior por una constante.
El nesimo termino se obtiene con la ecuación:
an = a1 + d*(n-1)
Si nos fijamos tenemos el primer término 2.5 y la diferencia de la sucesión es d = 1.5, por lo tanto:
an = 2.5 + 1.5*(n - 1)
Luego el quinto término es:
a5 = 2.5 + 1.5*(5-1)
a5 = 2.5 + 1.5*4
a5 = 2.5 + 6
a5 = 8.5
Puedes visitar: https://brainly.lat/tarea/12147833