Matemáticas, pregunta formulada por juliethximena22, hace 1 año

Considera el triangulo ABC, cuyos vertices estan ubicados en los puntos de coordenadas A(-2,2), B(8,3) y C(3,5). a. Encuentra la ecuación de cada una de las rectas que contiene sus lados. b. Calcula las coordenadas de los puntos medios de cada lado. c. Encuentra las ecuaciones de las rectas que contienen sus medidas.

Respuestas a la pregunta

Contestado por benjamin1018
50
a) Ecuación de la recta que contiene cada uno de sus lados

Ecuación #1:

A( - 2, 2 ) ; B( 8, 3 )

( y - 3 ) = ( 3 - 2 ) / ( 8 + 2 ) ] ( x - 8 )

( y - 3 ) = ( 1 / 10 ) ( x - 8 )

y - 3 = (1/10)x - ( 4/5 )

y = ( 1/10)x - ( 4/5 ) + 3

y = ( 1/10 )x + ( - 4 + 15 ) / 3

y = ( 1/10 )x + (11/3) ⇒ ecuación de la recta #1

Ecuación #2:

A( - 2, 2 ) ; C( 3, 5 )

( y - 5 ) = [ ( 5 - 2) / ( 3 + 2 ) ] ( x - 3 )

y - 5 = (3/5) ( x - 3 )

y - 5 = (3/5)x - (9/5)

y = (3/5)x - (9/5) + 5

y = (3/5)x + ( - 9 + 25)/5

y = (3/5)x + 16/5 ⇒ ecuación de la recta #2

Ecuación #3:

B(8,3) ; C(3,5)

( y - 5 ) = [ ( 5 - 3) / ( 3 - 8 ) ] ( x - 3 )

( y - 5 ) = ( - 2 / 5 ) ( x - 3 )

( y - 5 ) = ( -2/5)x + (6/5)

y = ( - 2/5)x + ( 6/5 ) + 5

y = ( - 2/5)x + ( 6 + 25)5

y = ( - 2/5)x + 31/5 ⇒ ecuación de la recta

b) Coordenadas de los puntos medios de cada lado

Usando la fórmula de punto medio:

(xMedio ; yMedio ) = [ ( x1 + x2 ) / 2 ] ; [ (y1 + y2) / 2 ] 

Para el lado #1 ⇒ A( - 2 ; 2) ; B( 8 ; 3 )

( x1Medio ; y1Medio ) = [ ( - 2 + 8 ) / 2 ] ; [ ( 2 + 3 ) / 2 ]

(x1Medio ; y1Medio ) = ( 3 ; 5/2 ) ⇒ coordenadas del punto medio para lado#1

Para el lado #2 ⇒ A( - 2; 2) ; C(3 ; 5)

(x2Medio ; y2Medio ) = [ ( - 2 + 3 ) / 2 ] ; [ ( 5 + 2 ) / 2 ]

(x2Medio ; y2Medio ) = ( 1/2 ) ; ( 7/2 ) ⇒ coordenadas del punto medio para lado#2

Para el lado #3 ⇒ B( 8 ; 3 ) ; C( 3 ; 5 )

(x3Medio ; y3Medio ) = [ (8 + 3) / 2 ] ; [ (3 + 5) / 2 ]

(x3Medio ; y3Medio ) = ( 11/2 ) ; ( 4 ) ⇒ coordenadas del punto medio para lado #3

c) Ecuaciones de las rectas que pasan por los puntos medios

Ecuación #1: ( 3 ; 5/2 ) ; ( 1/2 ; 7/2 )

( y - 5/2 ) = [ (7/2 - 5/2) / ( 1/2 - 3 ) ] ( x - 3 )

( y - 5/2 ) = [ ( 5/2) / (- 5/2) ] ( x - 3)

y - 5/2 = - ( x - 3 )

y = - x + 3 + 5/2

y = - x + (11/2) ⇒ ecuación de la recta que pasa por los puntos medios 

Ecuación #2: ( 3 ; 5/2 ) ; ( 11/2 ; 4 )

( y - 4 ) = [ ( 4 - 5/2 ) / ( 11/2 - 3 ) ] ( x - 11/2 )

( y - 4 ) = [ ( 3/2) / (5/2) ] ( x - 11/2 )

( y - 4 ) = (3/5) * ( x - 11/2 )

y - 4 = (3/5)x - (33/10)

y = ( 3/5 )x + ( - 33/10 + 4 )

y = (3/5)x + ( - 33 + 40) / 10

y = (3/5)x + (7/10) ⇒ ecuación de la recta que pasa por los puntos medios

Ecuación #3: (1/2 ; 7/2) ; ( 11/2 ; 4 )

y - 4 = [ ( 4 - 7/2 ) / ( 11/2 - 1/2) ] ( x - 11/2 )

y - 4 = [ ( 1/2 ) / ( 5) ] ( x - 11/2)

y - 4 = ( 1/10 ) ( x - 11/2 )

y = (1/10)x - (11/20) + 4

y = (1/10)x + ( 69/20 ) ⇒ ecuación de la recta de los puntos medios

Recuerda marcar Mejor Respuesta si te gustó
Otras preguntas