Matemáticas, pregunta formulada por prfaty08, hace 6 meses

Con procedimiento por favor

Adjuntos:

Respuestas a la pregunta

Contestado por S4NTA
2

Respuesta:

\frac{1}{x+1}+x+C

Explicación paso a paso:

\int \frac{x^2+2x}{\left(x+1\right)^2}dx

\frac{x^2+2x}{\left(x+1\right)^2}

=\frac{x^2+2x-\left(\left(x+1\right)^2\right)}{\left(x+1\right)^2}+1

=\frac{x^2+2x-\left(x+1\right)^2}{\left(x+1\right)^2}+1

=\frac{-1}{\left(x+1\right)^2}

=-\frac{1}{\left(x+1\right)^2}+1

=\int \:-\frac{1}{\left(x+1\right)^2}+1dx

\mathrm{Aplicar\:la\:regla\:de\:la\:suma}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

-\int \frac{1}{\left(x+1\right)^2}dx+\int \:1dx

\int \frac{1}{\left(x+1\right)^2}dx

\mathrm{Sustituir:}\:u=x+1

\Rightarrow \:du=1dx

\Rightarrow \:dx=1du

=\int \frac{1}{u^2}\cdot \:1du

=\int \frac{1}{u^2}du

=\int \:u^{-2}du

=\frac{u^{-2+1}}{-2+1}

\mathrm{Sustituir\:en\:la\:ecuacion}\:u=x+1

=\frac{\left(x+1\right)^{-2+1}}{-2+1}

=-\frac{1}{x+1}

\int \:1dx

=1\cdot \:x

=x

=-\left(-\frac{1}{x+1}\right)+x

=\frac{1}{x+1}+x

=\frac{1}{x+1}+x+C

Otras preguntas