Completar las tablas de verdad
p q ~p pv~p
1 1 0
1 0 0
0 1 1
0 0 1
p q ~p ~q ~pv~q
p q ~p ~q ~pΛ~q
p q ~p ~q ~pvq
p q ~p ~q ~p→~q
p q ~p ~q ~p↔~q
p q ~p ~q ~p⨁~q
Respuestas a la pregunta
Respuesta: 1
“LÓGICA I”
EJERCICIOS RESUELTOS – 6
TEMA 6 – SEMÁNTICA: TABLAS DE VERDAD
Y RESOLUCIÓN VERITATIVO-FUNCIONAL
EJERCICIO 6.01
Comprobar por tablas de verdad si la siguiente fbf es o no satisfacible:
¬(¬p → ¬q)
p q ¬(¬p → ¬q)
V V F V
V F F V
F V V F
F F F V 2ª 1ª
La fbf es satisfacible, ya que resulta V en la 3ª interpretación.
EJERCICIO 6.02
Comprobar por tablas de verdad si la siguiente fbf es o no satisfacible:
¬(p → q) ∨ (¬p ∧ ¬q)
p q ¬(p → q) ∨ (¬p ∧ ¬q)
V V F F F
V F V V F
F V F F F
F F F V V 1ª 3ª 2ª
La fbf es satisfacible, ya que resulta V en la 2ª y en la 4ª interpretación.
EJERCICIO 6.03
Comprobar por tablas de verdad si la siguiente fbf es o no tautológica:
╞ (p → q ∧ ¬q) → ¬p
p q (p → q ∧ ¬q) → ¬p
V V F V
V F F V
F V V V
F F V V 1ª 2ª
La fbf es tautológica, ya que resulta V en todas las interpretaciones.
2
EJERCICIO 6.04
Comprobar por tablas de verdad si la siguiente fbf es o no tautológica:
╞ (p → ¬q) ∨ (q → ¬r)
p q r (p → ¬q) ∨ (q → ¬r)
V V V F F F
V V F F V V
V F V V V V
V F F V V V
F V V V V F
F V F V V V
F F V V V V
F F F V V V 1ª 3ª 2ª
La fbf no es tautológica, ya que resulta F en la 1ª interpretación.
EJERCICIO 6.05
Comprobar por tablas de verdad si la siguiente fbf es o no contingente:
(p ∨ q) ∧ (¬q → p)
p q (p ∨ q) ∧ (¬q → p)
V V V V V
V F V V V
F V V V V
F F F F F 1ª 3ª 2ª
La fbf es contingente, ya que resulta V en tres interpretaciones y F en la 4ª.
EJERCICIO 6.06
Comprobar por tablas de verdad si la siguiente fbf es o no contingente:
p ∨ (p → q ∧ r)
p q r p ∨ (p → q ∧ r)
V V V V V V
V V F V F F
V F V V F F
V F F V F F
F V V V V V
F V F V V F
F F V V V F
F F F V V F 3ª 2ª 1ª
La fbf no es contingente, ya que resulta V en todas las interpretaciones (y no es F en
ninguna).
3
EJERCICIO 6.07
Comprobar por tablas de verdad si las siguientes fbfs son o no simultáneamente satisfa-
cibles:
¬(p → q) p ∨ q
p q ¬(p → q) p ∨ q
V V F V
V F V V
F V F V
F F F F
Las dos fbfs son simultáneamente satisfacibles, ya que son V a la vez en la 2ª interpre-
tación.
EJERCICIO 6.08
Comprobar por tablas de verdad si las siguientes fbfs son o no simultáneamente satisfa-
cibles:
¬(p → q) (¬q → ¬p)
p q ¬(p → q) ¬q → ¬p
V V F V
V F V F
F V F V
F F F V
Las dos fbfs son simultáneamente insatisfacibles, ya que en ninguna de las 4 interpreta-
ciones resultan V a la vez.
EJERCICIO 6.09
Comprobar por tablas de verdad si es o no válido el siguiente esquema argumentativo:
p → q ╞ p ∨ q → q
p q p → q p ∨ q → q
V V V V V
V F F V F
F V V V V
Explicación paso a paso: