Estadística y Cálculo, pregunta formulada por brenrojcor29, hace 1 mes

¿Como resolverían ustedes este tipo de problemas de manera sencilla y sin mucho procedimiento?
En una fábrica de pizarras cada empleado puede hacer, en una hora 2 pizarras grandes y 35 pequeñas.

Si la fábrica dispone de 3 horas para hacer un pedido de 20 pizarras grande y 700 pequeñas, ¿cuantos empleados, como mínimo, debe tener para cumplir el pedido?

Respuestas a la pregunta

Contestado por megatokay
2

De acuerdo al análisis de proposionalidad que a continuación se describe, se requieren 10 trabajadores para producir 20 pizarras pequeñas y 700 grandes en 3 horas.

Planteamiento del problema

La razón proporcional del tiempo (hora/hombre) y la producción viene dada por 2 y 35 para pizarras grandes y pequeñas respectivamente.

Entonces, la relación de proporcionalidad nos permite calcular tanto la capacidad de los trabajadores para la producción de pizarras dado cualquier valor de tiempo, y la cantidad de horas-hombres que se requieren para fabricar determinado número de pizarras grandes o pequeñas.

En este caso, el problemas nos pide la cantidad mínima de trabajadores necesarios para completar en 3 horas un pedido de 20 pizarra grandes y 700 pequeñas, esto debido a que es imposible que un solo hombre complete la orden en 3 horas.

  • Solución:

Primero, debemos calcular la producción de pizarra grandes y pequeñas de un solo trabajador en 3 horas:

Pizarras grandes = 3 horas * 2 pizarras =  6

Pizarras pequeñas = 3 horas * 35 pizarras = 105  

Luego, como nos piden la producción de 20 y 700 en cada tipo de pizarras,  dividimos el valor anterior para saber el número de trabajadores necesarios en cada rubro y luego sumar los resultados.

Empleados = 20 / 6 + 700/105

Empleados = 3.33 + 6.66

Empleados = 9.99 (aproximadamente 10)

Para saber más acerca de proporcionalidad consulte https://brainly.lat/tarea/13739957

#SPJ1

Adjuntos:

brenrojcor29: Gracias, ha sido usted de mucha ayuda
Otras preguntas