Matemáticas, pregunta formulada por flakitangelus, hace 1 año

como resolver
log2+2log(x-3)=log2x

Respuestas a la pregunta

Contestado por Usuario anónimo
9
solución:
Lo primero es aplicar propiedades de logaritmos.

Propiedad del producto= Log(a*b) = Log(a) + Log(b)
Propiedad de potencia= Log(a)^b = b Log(a)

Tu ejercicio:

=> Log 2 + 2 Log(x-3) = Log 2x

=> Log 2 + Log (x-3)^2 = Log (2x)

=> Log ( 2*(x-2)^2) = Log (2x)

=> 2*(x-2)^2 = 2x

=> 2 * ( x^2 - 4x + 4) = 2x

=> 2x^2 - 8x + 8 = 2x

=> 2x^2 - 8x - 2x + 8 = 0

=> 2x^2 - 10x + 8 = 0 .....(ecuación cuadrática)

=> x^2 - 5x + 4 = 0   .......(dividir por 2 ambos lados)

=> (x - ....) ( x - ...) = 0 ......(factorizar)

=> ( x - 4) ( x - 1) = 0 .......( teorema del factor nulo)

=> x - 4 = 0   .... y ..... x - 1 = 0

=> x(1) = 4 .......y....... x(2) = 1

Respuesta: solo la solución x= 4 satisface al logaritmo.

saludos.
renedescartes


Anamaa: Utiliza las pripiedades
Usuario anónimo: es correcto utilice las propiedades de logaritmos, porque?
Otras preguntas