Como resolver ecuaciones de segundo grado incompletas metodos particulares? , .
Respuestas a la pregunta
Contestado por
6
Junior,
Una ecuación de segundo grado completa tiene la forma
ax^2 + bx + c = 0
En una incompleta el coeficiente "b", "c" o los dos serán nulos
Coeficente "a" siempre presente ya que caracteriza a la ecuación
La solución, en cualquier caso, es muy facil, directa
NULO COEFICIENTE "b"
ax^2 + 0x + c = 0
ax^2 + c = 0
Ejemplo
3x^2 - 27 = 0
3x^2 = 27
x^2 = 27/3
x^2 = 9
x = √9
x1 = - 3
x2 = 3
S = {- 3, 3}
NULO COEFICIENTE "c"
ax^2 + bx + 0 = 0
ax^2 + bx = 0
Ejemplo
x^2 + 7x = 0
Factorizando
x(x + 7) = 0
Cada factor será nulo
x = 0
x1 = 0
x + 7 = 0
x2 = - 7
S = {- 7, 0}
NULOS COEFICIENTES "b" Y "c"
ax^2 + 0x + 0 = 0
ax^2 = 0
x^2 = 0/a
x^2 = 0
x = √0
x = 0
S = {0}
ATENCIÓN
El 0 es un número especial
solotiene una raiz que es el propio 0
Una ecuación de segundo grado completa tiene la forma
ax^2 + bx + c = 0
En una incompleta el coeficiente "b", "c" o los dos serán nulos
Coeficente "a" siempre presente ya que caracteriza a la ecuación
La solución, en cualquier caso, es muy facil, directa
NULO COEFICIENTE "b"
ax^2 + 0x + c = 0
ax^2 + c = 0
Ejemplo
3x^2 - 27 = 0
3x^2 = 27
x^2 = 27/3
x^2 = 9
x = √9
x1 = - 3
x2 = 3
S = {- 3, 3}
NULO COEFICIENTE "c"
ax^2 + bx + 0 = 0
ax^2 + bx = 0
Ejemplo
x^2 + 7x = 0
Factorizando
x(x + 7) = 0
Cada factor será nulo
x = 0
x1 = 0
x + 7 = 0
x2 = - 7
S = {- 7, 0}
NULOS COEFICIENTES "b" Y "c"
ax^2 + 0x + 0 = 0
ax^2 = 0
x^2 = 0/a
x^2 = 0
x = √0
x = 0
S = {0}
ATENCIÓN
El 0 es un número especial
solotiene una raiz que es el propio 0
Otras preguntas