Como puedo explicar por extensión la contención de un conjunto en otro
Denotaremos por IN al conjunto de los n´umeros naturales y por ZZ al de los enteros.
Dados dos conjuntos A y B decimos que A est´a contenido en B o tambi´en que A es
un subconjunto de B si cada elemento de A es tambi´en un elemento de B, es decir, si
Respuestas a la pregunta
Respuesta:
Historia de conjuntos
El concepto de conjunto como objeto abstracto no comenzó a emplearse en matemáticas hasta el siglo XIX, a medida que se despejaban las dudas sobre la noción de infinito.1 Los trabajos de Bernard Bolzano y Bernhard Riemann ya contenían ideas relacionadas con una visión conjuntista de la matemática. Las contribuciones de Richard Dedekind al álgebra estaban formuladas en términos claramente conjuntistas, que aún prevalecen en la matemática moderna: relaciones de equivalencia, particiones, homomorfismos, etc., y él mismo explicitó las hipótesis y operaciones relativas a conjuntos que necesitó en su trabajo.
La teoría de conjuntos como disciplina independiente se atribuye usualmente a Georg Cantor. Comenzando con sus investigaciones sobre conjuntos numéricos, desarrolló un estudio sobre los conjuntos infinitos y sus propiedades. La influencia de Dedekind y Cantor empezó a ser determinante a finales del siglo XIX, en el proceso de «axiomatización» de la matemática, en el que todos los objetos matemáticos, como los números, las funciones y las diversas estructuras, fueron construidos con base en los conjuntos.
Definición
[…] entiendo en general por variedad o conjunto toda multiplicidad que puede ser pensada como unidad, esto es, toda colección de elementos determinados que pueden ser unidos en una totalidad mediante una ley.
—Georg Cantor2
Un conjunto es una colección bien definida de objetos, entendiendo que dichos objetos pueden ser cualquier cosa: números, personas, letras, otros conjuntos, etc. Algunos ejemplos son:
A es el conjunto de los números naturales menores que 5.
B es el conjunto de los colores verde, blanco y rojo.
C es el conjunto de las vocales a, e, i, o y u.
D es el conjunto de los palos de la baraja francesa.
Los conjuntos se denotan habitualmente por letras mayúsculas. Los objetos que componen el conjunto se llaman elementos o miembros. Se dice que «pertenecen» al conjunto y se denota mediante el símbolo ∈:n 1 la expresión a ∈ A se lee entonces como «a está en A», «a pertenece a A», «A contiene a a», etc. Para la noción contraria se usa el símbolo ∉. Por ejemplo:
3 ∈ A , ♠ ∈ D
amarillo ∉ B, z ∉ C
Notación
Relación de pertenencia. El conjunto A es un conjunto de polígonos. En la imagen, algunas de las figuras pertenecen a dicho conjunto, pero otras no.
Existen varias maneras de referirse a un conjunto. En el ejemplo anterior, para los conjuntos A y D se usa una definición intensiva o por comprensión, donde se especifica una propiedad que todos sus elementos poseen. Sin embargo, para los conjuntos B y C se usa una definición extensiva, listando todos sus elementos explícitamente.
Es habitual usar llaves para escribir los elementos de un conjunto, de modo que:
B = {verde, blanco, rojo}
C = {a, e, i, o, u}
Esta notación mediante llaves también se utiliza cuando los conjuntos se especifican de forma intensiva mediante una propiedad:
A = {Números naturales menores que 5}
D = {Palos de la baraja francesa}
Otra notación habitual para denotar por comprensión es:
A = {m : m es un número natural, y 1 ≤ m ≤ 5}
D = {p : p es un palo de la baraja francesa}
F = {n2 : n es un entero y 1 ≤ n ≤ 10},
En estas expresiones los dos puntos («:») significan «tal que». Así, el conjunto F es el conjunto de «los números de la forma n2 tal que n es un número natural entre 1 y 10 (ambos inclusive)», o sea, el conjunto de los diez primeros cuadrados de números naturales. En lugar de los dos puntos se utiliza también la barra vertical («|») u oblicua «/» .
Igualdad de conjuntos
Conjunto de personas. El conjunto de «personas» mostrado en la imagen, A, tiene 8 miembros. Este conjunto puede representarse mediante llaves o mediante un diagrama de Venn. El orden de las personas en A es irrelevante.
Un conjunto está totalmente determinado por sus elementos. Por ello, la igualdad de conjuntos se establece como:
Propiedad de la extensionalidad
Dos conjuntos A y B que tengan los mismos elementos son el mismo conjunto, A = B.
Esta propiedad tiene varias consecuencias. Un mismo conjunto puede especificarse de muchas maneras distintas, en particular extensivas o intensivas. Por ejemplo, el conjunto A de los números naturales menores que 5 es el mismo conjunto que A′, el conjunto de los números 1, 2, 3 y 4. También:
B = {verde, blanco, rojo} = {colores de la bandera de México}
C = {a, e, i, o, u} = {vocales del español}
D = {Palos de la baraja francesa} = {♠, ♣, ♥, ♦}
El orden en el que se precisan los elementos tampoco se tiene en cuenta para comparar dos conjuntos:
Respuesta:
A C B={1,2,3,4}
Explicación paso a paso:
A={ 1,2,3,4}
B={1,2,3,4,5,6,7}