como puedo calcular ángulos de triángulos rectángulos si solo me dan el seno o el coseno
Respuestas a la pregunta
Supongamos que quieres construir una rampa de acceso para un muelle de carga que está a 4 pies por encima del nivel del suelo. Quieres que sea posible empujar un carro por la rampa, y que el ángulo de elevación no exceda los 20°. ¿Qué tan larga debe ser la rampa?
En este diagrama, tenemos un triángulo rectángulo del cual conocemos la longitud de un lado y la medida de un ángulo agudo. Queremos encontrar la longitud de la hipotenusa. Probablemente sepas que el Teorema de Pitágoras te permite encontrar la longitud de un lado de un triángulo rectángulo, teniendo las longitudes de los otros dos lados. Ahora aprenderás trigonometría, que es la rama de las matemáticas que estudia la relación entre ángulos y lados de triángulos. De hecho, la trigonometría te permitirá encontrar las longitudes desconocidas y las medidas de los ángulos en triángulos rectángulos en una variedad de casos, como el problema anterior.
Los Lados de un Triángulo Rectángulo
En el ejemplo anterior, uno de los ángulos agudos mide 20°. Podrías describir el lado cuya medida es 4 pies como la altura del triángulo, o podrías decir que es el “opuesto” del ángulo de 20°. El otro lado del triángulo se llama “adyacente” al ángulo de 20°. En trigonometría, este tipo de relación entre lados y ángulos es muy importante. Estos dos lados de un triángulo rectángulo se llaman “catetos”, por lo que el lado opuesto se llama cateto opuesto y el lado adyacente se llama cateto adyacente.
La relación general entre lados y ángulos se muestra en el diagrama siguiente.
El ángulo A está formado por la hipotenusa y el cateto . Decimos que el cateto es adyacente al ángulo A. Decimos que el cateto es el lado opuesto al ángulo A. En otras palabras, el cateto adyacente es el lado que forma parte del ángulo; el cateto opuesto es el lado que no forma parte del ángulo.