Matemáticas, pregunta formulada por theboss0990, hace 1 año

¿Cómo a partir de una situación problema específica la puedes generalizar de tal forma que la puedas aplicar en otras situaciones problemas similares?

Respuestas a la pregunta

Contestado por ranzessaman
0

Respuesta:

Sin duda, la resolución de problemas es la línea sobre la que se han centrado el mayor número de esfuerzos, tanto por lo escrito sobre el tema como por el desarrollo de proyectos de investigación en los últimos 30 años y, en consecuencia, la que mayor impulso ha proporcionado a la educación matemática. Quizás la razón sea que se nutre de los aspectos esenciales del quehacer matemático: los problemas y las acciones típicas del pensamiento que intervienen en el proceso de solución. El estudio e incorporación de estos aspectos, así como la puesta en claro de cómo realizar acciones que contribuyan a la resolución de los problemas, se debe a George Polya que, debido al acostumbrado fracaso de sus estudiantes en el aprendizaje de las matemáticas, se propuso diseñar un método que pudiera servirles para aprender a resolver problemas, al cual denominó ¿Cómo resolverlo? (Polya, 1945), marcando así un nuevo rumbo en el estudio de problemas relacionados con la enseñanza y el aprendizaje de las matemáticas.

Es a partir de la década de 1970 cuando se reconoce plenamente el trabajo de Polya y surgen estudios, artículos y libros que buscan dar explicaciones a sus planteamientos desde diferentes ángulos. Algunos de ellos son: NCTM (1980, 2000), Schoenfeld (1985), Santos (2007), Lesh et al. (2000), Lester y Kehle (2003), sin citar a otros investigadores que se ubican dentro del constructivismo.

Aquí se destacan dos importantes planteamientos surgidos de estos estudios: el primero se relaciona con el diseño de problemas o tareas que resulten útiles en la enseñanza de las matemáticas, y el segundo tiene que ver con la implementación de una forma de instrucción que combine el trabajo colectivo de los estudiantes, en pequeños grupos y en toda la clase, con el individual (Balanced Assessment Package for the Mathematics Curriculum, 1999, 2000; NCTM, 2000). En este contexto se ubica el presente trabajo; las tareas fueron diseñadas para que los estudiantes expresen lo que saben y estén dispuestos a investigar lo que desconocen mediante la discusión y el intercambio de experiencias. Nos interesa documentar el cambio en las maneras de pensar de los estudiantes cuando se enfrentan a problemas de matemáticas escolares que involucran diferentes modos de solución, mediante una forma particular de instrucción.

Algunas preguntas que guían el desarrollo del estudio son: ¿Qué formas de comprensión matemática y métodos de solución aparecen durante los procesos de resolución de problemas? ¿Qué formas de instrucción favorecen el aprendizaje de los estudiantes? ¿Cuál es el papel del profesor durante el desarrollo de las sesiones de aplicación de las tareas? ¿Qué significa que los estudiantes aprendan matemáticas?

¡SI TE AYUDÓ MI RESPUESTA, PONLA COMO MEJOR RESPUESTA!

Otras preguntas