Matemáticas, pregunta formulada por Lh542410gmailcom, hace 10 meses

Carla asiste a un casino, apuesta todo lo que tiene y gana un quinto. luego apuesta los tres cuartos de lo que tiene ahora y pierde la cuarta parte. Finalmente decide apostar todo el dinero que tiene ahora y gana los dos tercios. Si al final de todo Carla observa que ganó 60 $. ¿ cuál fue el dinero que tenia Carla al inicio?
A) 136 $
b) 120 $
c) 84 $
d) 95 $
e) ninguno

me lo explican porfa​

Respuestas a la pregunta

Contestado por MichaelSpymore1
11

Respuesta: e) 96$✔️tenía Carla al inicio.

Explicación paso a paso:

Llamemos C al dinero que tiene Carla al inicio

Nos dicen que apuesta todo y gana 1/5.

Expresando esta situación algebraicamente tenemos:

C + C/5 = 6C/5

Nos dicen que luego apuesta los 3/4 de lo que tiene y pierde la cuarta parte.

Expresando esta situación algebraicamente tenemos:

Apuesta: 3/4 ·6C/5 = 18C/20

Pierde la cuarta parte: 1/4 · 18C20 = 18C/80

Quedan = 6C/5 - 18C/80 = (16·6C - 18C)/80 = (96C - 18C)/80 = 78C/80

Finalmente apuesta todo y gana 2/3.

Expresando esta situación algebraicamente tenemos:

Gana: 2/3 ·78C/80 =  2·78C/3·80 = 156C/240 = 52C/80

Quedan: 78C/80 + 52C/80 = 130C/80

Finalmente tiene 130C/80 y nos dicen que esto es C + 60$

130C/80 = C + 60$

130C = 80C + 80·60$

130C = 80C + 4800$

130C - 80C = 4800$

50C = 4800$

C = 4800$/50 = 96$ , este era el dinero inicial

Respuesta: e) 96$✔️tenía Carla al inicio.

Verificar:

Comenzamos con 96$ y realizamos las operaciones enunciadas:

Apuesta 96$ y gana 1/5

Quedan:

96$ + 96$/5 = (480$+96$)/5 = 576$/5

Apuesta 3/4 de lo que tiene:

3/4 de 576$/5 = 3/4 · 576$/5 = 1728$/20

Pierde la cuarta parte: 1/4 · 1728$/20 = 1728$/80

Quedan:

576$5 - 1728$/80 = (16·576$ -1728$)/80 = (9216$ - 1728$)/80 = 7488$/80

Finalmente apuesta todo y gana 2/3

Gana: 2/3 · 7488$/80 = 2·7488$/3·80 = 14976$/240

Quedan:

7488$/80 + 14976$/240 = 7488$/80 + 4992$/80 = 12480$/80 = 156$

Como comenzó con $96, ha ganado la diferencia:

156$ - $96 = 60$✔️comprobado

Michael Spymore


Lh542410gmailcom: grax tu si sabes
Otras preguntas