Física, pregunta formulada por estudiante4875, hace 1 año

calcule la derivada de las siguientes funciones aplicando las reglas de la derivación.
f(x)=(13x^2+3)^2 〖.(12x)〗^4x

Adjuntos:

Respuestas a la pregunta

Contestado por Herminio
0

Derivada de un producto: (u v)' = u' v + u v' (1)

Vamos hacerlo por separado.

Derivada del primer paréntesis: u = (13 x² + 3)²

u' = 2 (13 x² + 3) . 26 x = 52 x (13x² + 3)

Derivada del segundo paréntesis.

Siendo una función exponencial debe aplicarse logaritmos.

v = (12 x)^(4 x)

Ln(v) = 4 x Ln(12 x); hay un producto de funciones

v' / v = 4 Ln(12 x) + 4 x . 12 / x = 4 Ln(12 x) + 48

v' = (12 x)^(4 x) . [4 Ln(12 x) + 48]

Reemplazamos en (1)

f '(x) = 52 x (13x² + 3)  (12 x)^(4 x) + (13 x² + 3)² (12 x)^(4 x) . [4 Ln(12 x) + 48]

Saludos.


estudiante4875: hola, sera que me puedes hacer el favor de ayudarme en esta https://brainly.lat/tarea/14892687
Otras preguntas