Calcular un nùmero positivo sabiendo que su triple más el doble de su cuadrado es 119. con procedimiento paso a paso
Respuestas a la pregunta
Contestado por
198
SIendo x el número que tenemos que hallar, el enunciado dice que su triple (3x) sumado al doble de su cuadrado (2x²) es 119.
Es decir:
2x² + 3x = 119 ⇒ 2x² + 3x -119 =0 es una ecuación de dsegundo grado que se resuelve:
x = [-3+-]/4
x = [-3+-]/4
x = (-3+-31)/4
x = 28 : 4 = 7
Es decir:
2x² + 3x = 119 ⇒ 2x² + 3x -119 =0 es una ecuación de dsegundo grado que se resuelve:
x = [-3+-]/4
x = [-3+-]/4
x = (-3+-31)/4
x = 28 : 4 = 7
Contestado por
31
A continuación resolveré el ejercicio de habilidd numérica dada.
Para resolverlo escribiremos cada parte del enunciado en forma algebraica:
- El triple de un número es 3x
- el doble de su cuadrado es 2x²
Por lo tanto, el número el cual su su triple más el doble de su cuadrado es 119 es el resultado de 3x+2x²=119
El valor de X para el cual se satisface dicha igualdad es el de: 7
Ver más en: https://brainly.lat/tarea/18770909
Otras preguntas
Matemáticas,
hace 8 meses
Matemáticas,
hace 8 meses
Ciencias Sociales,
hace 8 meses
Física,
hace 1 año
Matemáticas,
hace 1 año
Matemáticas,
hace 1 año