Matemáticas, pregunta formulada por riv27, hace 11 meses

Calcular:
S = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 26 × 27


Jaadee: debe dar un resultado en específico?

Respuestas a la pregunta

Contestado por Jaadee
0

Respuesta: Sacar el valor de n

1 × 2 + 2 × 3 + 3 × 4 + ⋯ +n.(n+1)

Y tu quieres calcular

1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 26 × 27

n=15

Fórmula:  

S = n . (n+1) . (n+2)  / 3

Reemplazas:

S=25x26x27

S=17550/ 3

S=5850


Jaadee: Creo y estoy mal, espera
Jaadee: Creo y ya
Jaadee: Espero y te ayude
Jaadee: ;-;
josepphh1996: Your answer is incorrect. Notice that you have a partial sum from k = 1 to n = 26 given by S(k) = Σk(k+1). So you can't take n = 15. and your S is not usual in this case.
josepphh1996: Computing we have S(k) = 6 552
Jaadee: I'm so sorry, I going to check my answer, thank you for your comments, and i don't speak English, ;-;
Contestado por josepphh1996
0

Answer:

Notice that

1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 26 × 27

= Σk(k+1) , where k = 1 , 2,..., 26. But

Σk(k+1) = Σk^2 + Σk. Now, recall that

Σk^2 = n(n+1)(2n+1)/6 and Σk = n(n+1)/2.

Therefore, for k in {1,2,..,26}, you have

Σk(k+1) = 26(27)(53)/6 + 26(27)/2

= 6 201 + 351

= 6 552

That is

1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 26 × 27

= 6 552.

and I'm done.

Otras preguntas