Matemáticas, pregunta formulada por pinedapenamanuelanto, hace 9 meses

calcular el vertice de f£x)=x2-2x-15​

Respuestas a la pregunta

Contestado por lorena20081711
1

Respuesta:

Explicación paso a paso:

El área baja la curva se obtiene de una integral.

La función f(x) = x² - 2x - 15, es una parábola.

y = x² - 2x - 15, completamos cuadrados

y + 15 = x² - 2x

y + 15 = (x² - 2x + 1 - 1)

y + 15 = (x - 1)² - 1

y + 16 = (x - 1)²

Vértice de la parábola: (1, -16)

Puntos de corte con los ejes:

- Si x = 0 :

y + 16 = (0 - 1)²

y + 16 = 1

y = -15          ⇒    (0, -15)

- Si y = 0 :

0 + 16 = (x - 1)²

16 = x² - 2x + 1

x² - 2x - 15 = 0

Se obtiene dos puntos de corte: ⇒  (5, 0)     y    (-3, 0)

La ecuación tiene un punto mínimo por ser una parábola hacia arriba:

Mín (1, -16)

La región se acotará por dos rectas verticales:

x = -4      y       x = 7, además del eje x

Se obtienen tres regiones a las cuales le calcularemos la integral definida

(-119/3 + 175/3) + (27 - 68/3) + (175/3 + 27)

56/3 + 13/3  + 256/3 = 325/3 u²

Otras preguntas