Matemáticas, pregunta formulada por jasrojasmachaca24, hace 6 meses

calcula x donde :tan(3pi/2-5x)=cot (x-pi/9)

Respuestas a la pregunta

Contestado por Gabo2425
7

Respuesta:

tan\left(\frac{3\pi }{2}-5x\right)=cot\:\left(x-\frac{\pi }{9}\right)

\frac{\cos \left(5x\right)}{\sin \left(5x\right)}=\cot \left(x-\frac{\pi }{9}\right)

Restamos cot (x - π/9) de ambos lados

\cot \left(x-\frac{\pi }{9}\right)

\boxed{\frac{\cos \left(5x\right)}{\sin \left(5x\right)}-\cot \left(x-\frac{\pi }{9}\right)=0}

Simplificamos

\frac{\cos \left(5x\right)}{\sin \left(5x\right)}-\cot \left(x-\frac{\pi }{9}\right)=\frac{\cos \left(5x\right)-\cot \left(\frac{9x-\pi }{9}\right)\sin \left(5x\right)}{\sin \left(5x\right)}

\boxed{\frac{\cos \left(5x\right)-\cot \left(\frac{9x-\pi }{9}\right)\sin \left(5x\right)}{\sin \left(5x\right)}=0}

\frac{f\left(x\right)}{g\left(x\right)}=0\quad \Rightarrow \quad f\left(x\right)=0

\cos \left(5x\right)-\cot \left(\frac{9x-\pi }{9}\right)\sin \left(5x\right)=0

Expresar con seno, coseno

\frac{\cos \left(5x\right)\sin \left(\frac{-\pi +9x}{9}\right)-\cos \left(\frac{-\pi +9x}{9}\right)\sin \left(5x\right)}{\sin \left(\frac{-\pi +9x}{9}\right)}=0

\cos \left(5x\right)\sin \left(\frac{-\pi +9x}{9}\right)-\cos \left(\frac{-\pi +9x}{9}\right)\sin \left(5x\right)=0

-\sin \left(5x-\frac{-\pi +9x}{9}\right)=0

Dividimos entre -1 ambos lados

\frac{-\sin \left(5x-\frac{-\pi +9x}{9}\right)}{-1}=\frac{0}{-1}

\boxed{\sin \left(5x-\frac{-\pi +9x}{9}\right)=0}

5x-\frac{-\pi +9x}{9}=0+2\pi

5x-\frac{-\pi +9x}{9}=\pi +2\pi

Resolvemos

5x-\frac{-\pi +9x}{9}=0+2\pi        ⇒       x=\frac{\pi n}{2}-\frac{\pi }{36}

5x-\frac{-\pi +9x}{9}=\pi +2\pi        ⇒       \:x=\frac{2\pi }{9}+\frac{\pi n}{2}

Soluciones

\boxed{x=\frac{\pi n}{2}-\frac{\pi }{36}}

\boxed{x=\frac{2\pi }{9}+\frac{\pi n}{2}}

Saludos...


jasrojasmachaca24: Gracias
Otras preguntas