Calcula la suma de los 20 primeros números enteros positivos múltiplos de 3. ayudaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Respuestas a la pregunta
Respuesta:
La suma de los 20 primeros términos que son múltiplos de 3 es: 630 unidades
⭐Explicación paso a paso:
La suma de los términos se obtiene mediante la fórmula de progresión aritmética:
\boxed {S_{n}=\frac{(a_{n}+a_{n+1)}*n}{2} }
S
n
=
2
(a
n
+a
n+1)
∗n
, donde:
an: primer término de la progresión; en este caso an = 3
an+1: término enesimo; en este caso el término 20 corresponde a → an+1 = 3 * 20 = 60
n: posición del término enésimo
Sustituimos:
\boxed {S_{20}=\frac{(3+60)*20}{2} }
S
20
=
2
(3+60)∗20
\boxed {S_{20}=\frac{63*20}{2} }
S
20
=
2
63∗20
\boxed {S_{20}=\frac{1260}{2} }
S
20
=
2
1260
\boxed {S_{20}=630 }
S
20
=630
✔️Por lo tanto, la suma de los primeros 20 términos para los múltiplos de tres es igual a 630 unidades
Respuesta:
me copie no es mio espero te ayude