Matemáticas, pregunta formulada por paulaanavilla126, hace 26 días

calcula la altura de una torre, si desde un punto situado a 746m fe la base se ve la cúspide con un ángulo de elevación de 38°37'12''​

Respuestas a la pregunta

Contestado por airZz
0

Respuesta:

√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)

Explicación paso a paso:

√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y)) = (√2)*(3x + 5y + 7z)

rpt: 2

Otras preguntas