Matemáticas, pregunta formulada por riosmichll343, hace 10 meses

calcula el volumen de un cono circular recto si el diametro de su base mide 2a y su generatriz mide raiz cuadrada de 10a

Respuestas a la pregunta

Contestado por maderoesse
4

Respuesta:

20a^{2} espero que te ayude

Contestado por luismgalli
1

El volumen del un cono circular recto es: V = π a² √(10a-a²) /3

Explicación paso a paso:

El volumen de un cono circular recto viene dado por la formula:

V =π*r²*h/3

V: Volumen

r: radio

h: altura

Los elementos del cono son:

  1. Base (B): es la parte inferior del cono, que en el caso del cono circular recto, es un círculo cuyo radio es uno de los catetos del triángulo que se forma.
  2. Altura (h): distancia del centro la base al vértice de la pirámide.
  3. Vértice (V): punto donde se unen las generatrices.
  4. Generatriz (g): línea externa imaginaria que al girar al rededor de la base del cono desde el vértice

Datos:

D = 2a

r = 2a/2 = a

g = √10a

La altura del cono la determinamos con el Teorema de Pitágoras

h² = g²-r²

h² = (√10a)² -a²

h = √(10a-a²)

El volumen del un cono circular recto

V = π a² √(10a-a²) /3

Ve mas en:https://brainly.lat/tarea/10981012

Adjuntos:
Otras preguntas