Calcula el mcm para los siguientes conjuntos de números.
a) 8, 12
b) 12, 18
c) 20, 30
d) 12, 30
e) 26, 34
f) 18, 36
g) 8, 16, 24
h) 25, 40, 50
Respuestas a la pregunta
Respuesta:Se descomponen todos los números en factores primos.
2Se toman los factores comunes con menor exponente.
3Se multiplican los factores comunes con menor exponente.
Ejemplo: Hallar el {m. c. d.} de: {72, 108} y {60}.
1Descomponemos los números en factores primos
{\begin{array}{ccccccc}\begin{tabular}{c|c} 72 & 2 \\ 36 & 2 \\ 18 & 2 \\ 9 & 3 \\ 3 & 3 \\ 1 & \end{tabular} & & & \begin{tabular}{c|c} 108 & 2 \\ 54 & 2 \\ 27 & 3 \\ 9 & 3 \\ 3 & 3 \\ 1 & \end{tabular} & & & \begin{tabular}{c|c} 60 & 2 \\ 30 & 2 \\ 15 & 3 \\ 5 & 5 \\ 1 & \\ & \end{tabular} \end{array}}
Así, los números se escriben de la forma
{\begin{array}{rcl} 72 & = & 2^3 \cdot 3^2 \\\\ 108 & = & 2^2 \cdot 3^3 \\\\ 60 & = & 2^2 \cdot 3 \cdot 5 \end{array}}
2Los factores comunes con menor exponente son {2^2, 3}
3Para calcular el {m.c.d.} multiplicamos los factores comunes con menor exponente
{m.c.d.(72, 108, 60) = 2^2 \cdot 3 = 12}
Hay que notar que si un número es divisor de otro, entonces éste es el {m.c.d.} de ambos
Ejemplo: El número {12} es divisor de {36}, por lo que {m.c.d.(12, 36) = 12}