Matemáticas, pregunta formulada por arivelard18, hace 2 meses

calcula el área de un decágono regular que mide 15,8centimetros e lado y cuya apotema es de 24,30 centímetros ​

Respuestas a la pregunta

Contestado por roycroos
9

Rpta.】El área del decágono es de 158 cm².

                                 {\hspace{50 pt}\above 1.2pt}\boldsymbol{\mathsf{Procedimiento}}{\hspace{50pt}\above 1.2pt}

Recordemos que un decágono es un polígono regular, este tipo de polígono se caracteriza por poseer la misma longitud en todos sus lados y la misma medida en todos sus ángulos, para calcular el área usaremos lo siguiente

     \boxed{\boldsymbol{\mathsf{Per\acute{i}metro = 10(longitud\:de\:lado)}}}     \boxed{\boldsymbol{\mathsf{\acute{A}rea = \dfrac{(Per\acute{i}metro)(Apotema)}{2}}}}

Del problema conocemos que la longitud del lado es 15.8 cm, entonces:

                                           \mathsf{Per\acute{i}metro = 10(longitud\:de\:lado)}\\\\\mathsf{\:\:\:\:\:\:\:Per\acute{i}metro = 10(15.8\:cm)}\\\\\mathsf{\:\:\:\:\:\:\:\:\boxed{\boldsymbol{\mathsf{Per\acute{i}metro = 158\:cm}}}}

Ya conociendo esto procedemos a calcular el área

                                              \mathsf{\acute{A}rea = \dfrac{(Per\acute{i}metro)(Apotema)}{2}}\\\\\\\mathsf{\:\:\:\acute{A}rea = \dfrac{(158\:cm)(24.3\:cm)}{2}}\\\\\\\mathsf{\:\:\:\:\:\:\:\:\:\:\acute{A}rea = \dfrac{3839.4\:cm^2}{2}}\\\\\\\mathsf{\:\:\:\:\:\:\boxed{\boldsymbol{\mathsf{\acute{A}rea = 1919.7\:cm^2}}}}

                                                \mathsf{\mathsf{\above 3pt  \phantom{aa}\overset{\displaystyle \fbox{I\kern-3pt R}}{}\hspace{2 pt}\fbox{C\kern-6.8pt O}\hspace{2 pt}\overset{\displaystyle\fbox{C\kern-6.5pt G}}{} \hspace{2 pt}  \fbox{I\kern-3pt H} \hspace{2pt}\overset{\displaystyle\fbox{I\kern-3pt E}}{} \hspace{2pt} \fbox{I\kern-3pt R}  \phantom{aa}} \above 3pt}

Adjuntos:
Otras preguntas