Matemáticas, pregunta formulada por danielaeliserio, hace 8 meses

ayudenmeee porfavor!!​

Adjuntos:

Respuestas a la pregunta

Contestado por Usuario anónimo
0

Respuesta:

 \frac{ {x}^{2} - 40 }{ {x}^{3}  + 5 {x}^{2}  - 48x - 252}

Explicación paso a paso:

GENERAL:

 \frac{ {x}^{2} - 40 }{ {x}^{2}   +8x + 12}  \div  \frac{ {x}^{2} - x - 42 }{x + 2}

PROCEDIMIENTO:

Escribe 8x como una suma.

Para dividir una fracción, multiplica el recíproco de esa fracción.

 \frac{ {x}^{2}  - 40}{ {x}^{2} + 6x + 2x + 12 }  \times  \frac{x + 2}{ {x}^{2} - x - 42 }

Factoriza x de la expresión.

Factoriza 2 de la expresión.

 \frac{ {x}^{2} - 40 }{x \times (x + 6) + 2(x + 6)}  \times  \frac{x + 2}{ {x}^{2}  - x - 42}

Factoriza x+6 de la expresión.

 \frac{ {x}^{2}  - 40}{(x + 6) \times (x + 2)}  \times  \frac{x + 2}{ {x}^{2} - x - 42 }

Reduce la fracción usando el máximo común divisor x+2

 \frac{ {x}^{2} - 40 }{x + 6}  \times  \frac{1}{ {x}^{2}  - x - 42}

Multiplica las fracciones.

 \frac{ {x}^{2}  - 40}{(x + 6) \times ( {x}^{2} - x - 42) }

Multiplica los paréntesis.

 \frac{ {x}^{2} - 40 }{ {x}^{3} -  {x}^{2} - 42x  +  6 {x}^{2}   - 6x - 252 }

Agrupa los términos semejantes.

 \frac{ {x}^{2}  - 40}{ {x}^{3} + 5 {x}^{2}  - 48x - 252 }

SOLUCIÓN:

 \frac{ {x}^{2}  - 40}{ {x}^{3} + 5 {x}^{2}  - 48x - 252 }

Otras preguntas