Matemáticas, pregunta formulada por ariana1238yc, hace 1 mes

ayúdenme porfa es para hoy xddd

Adjuntos:

MONTONDETAREAS: Te ayudaría, pero no entiendo ni pedo :,V
ariana1238yc: rip yo

Respuestas a la pregunta

Contestado por alexcampos8395
1

Respuesta:

Explicación paso a paso:

Para el ejercicio 7:

Se considera que fuerza de tensión es igual a la fuerza la gravedad (peso); además, la tensión esta inclinada a 30° a partir de la esfera sobre el eje x:

Solución:

W = m \cdot \vec{g} \\ W = (5\: kg)(10\: \frac{m}{s^{2}} ) \\ W = 50\: N

De tal modo que: T = 50\: N

El módulo de la fuerza resultante es:

\vec{R} = \sqrt{(F_{x})^{2}+(F_{y})^{2}}

\vec{R} = \sqrt{[ 50\: N + (50\: N) \sin{30} ]^{2}+[ (50\: N) \cos{30} ]^{2}}

\vec{R} = \sqrt{5625+1875}

\vec{R} = \sqrt{7500}

\vec{R} = 50\sqrt{3}

La respuesta es la opción B

Para el ejercicio 7:

Se considera que el resorte esta deformado 3 cm, se sabe también que el módulo de elasticidad es de 8\: \frac{N}{cm} y g = 10\: \frac{m}{s^{2}} . Se solicita determinar \frac{W}{F_{k}}

Solución:

W = m \cdot \vec{g} \\ W = (2\: kg)(10\: \frac{m}{s^{2}} ) \\ W = 20\: N

F_{k} = k \cdot x \\ F_{k} = (8\: \frac{N}{cm})(3\: cm) \\ F_{k} = 24\: N

Sustituimos valores y operamos:

\frac{W}{F_{k}} = \frac{20\: N}{24\: N}

\frac{W}{F_{k}} = \frac{5}{6}

La respuesta es la opción B

Para la segunda parte anexo imagen:

También puedes revisar https://brainly.lat/tarea/64667728

Adjuntos:
Otras preguntas