Matemáticas, pregunta formulada por EliasJoaqui, hace 10 meses

Ayudenme a resolver esta ecuacion Trigonometrica :( porfavor

Adjuntos:

sss123: somos iguales

Respuestas a la pregunta

Contestado por Josema79
1

Explicación paso a paso:

 \cos(x)  - 4 \cos(x)  \sin(x)  = 0

 \sin {}^{2} ( x)  +  \cos {}^{2} (x) = 1 \\   \sin {}^{2} (x) = 1 -  \cos {}^{2} (x) \\  \sin(x)  =  \sqrt{1 -  \cos {}^{2}(x)  }

 \cos(x)    - 4 \cos(x) ( \sqrt{(1 -  \cos {}^{2}  (x)} ) = 0

 \cos(x) (1 - 4( \sqrt{(1 -  \cos {}^{2} (x) }) = 0

1 = 4 \sqrt{(1 -  \cos {}^{2} (x) } ) \\ 1 {}^{2}  = 16(1 -  \cos {}^{2} (x)) \\  \frac{1}{16}  = 1 -  \cos {}^{2} (x) \\  \cos {}^{2} (x) = 1 -  \frac{1}{16}  \\   \cos {}^{2} (x) =  \frac{15}{16} ... \cos(x)  =    +  -  \sqrt{ \frac{15}{16} }  \\  \cos(x)  =   \frac{ \sqrt{15} }{4} ...x = 14.53grados \\ cos(x) =  -  \frac{ \sqrt{15} }{4} ....x = 165.47grados \\

 \cos(x)  = 0....x1 = 90 \: grados...270grados


EliasJoaqui: Muchas gracias amigo
sss123: somos iguales
Otras preguntas