Ayuden me a encontrar el ángulo suplementario , el ángulo total , el ángulo complementario
Respuestas a la pregunta
dos ángulos son suplementarios de otros dos ángulos congruentes, también son congruentes entre sí.
Los senos de los ángulos suplementarios son los mismos, por ejemplo:
{\displaystyle \sin \alpha =\sin(180^{\circ }-\alpha )}{\displaystyle \sin \alpha =\sin(180^{\circ }-\alpha )}
{\displaystyle \sin \alpha =\sin(\pi -\alpha )}{\displaystyle \sin \alpha =\sin(\pi -\alpha )}
{\displaystyle \sin 120^{\circ }=\sin 60^{\circ }}{\displaystyle \sin 120^{\circ }=\sin 60^{\circ }}
Los cosenos de los ángulos suplementarios son de igual valor absoluto, pero de signo inverso, como muestran los siguientes ejemplos:
{\displaystyle \cos \alpha =-\cos(180^{\circ }-\alpha )}{\displaystyle \cos \alpha =-\cos(180^{\circ }-\alpha )}
{\displaystyle \cos \alpha =-\cos(\pi -\alpha )}{\displaystyle \cos \alpha =-\cos(\pi -\alpha )}
{\displaystyle \cos 120^{\circ }=-\cos 60^{\circ }}{\displaystyle \cos 120^{\circ }=-\cos 60^{\circ }}