Matemáticas, pregunta formulada por fiorelahuamanmendez, hace 2 meses

Ayudanmeee por favor ​

Adjuntos:

Respuestas a la pregunta

Contestado por guillermogacn
0

Respuesta:

\boxed{\mathsf{A=\sqrt{\dfrac{3^{797}}{3^{795}}+ \dfrac{2^{428}}{2^{424}} }=5}}

Explicación paso a paso:

A=\sqrt{\dfrac{3^{797}}{3^{795}}+ \dfrac{2^{428}}{2^{424}} }

por propieddes de exponentes podemos expresar de nuevo el valor de A asi:

A=\sqrt{3^{(797-795)}+ {2^{(428-424)}} }

resolvemos las restas de los exponentes quedando:

A=\sqrt{3^2+ 2^4}

resolviendo ahora las potencias de los numeros tenemos:

A=\sqrt{9+16}

sumando queda:

A=\sqrt{25}

finalmente resolvemos la raiz cuadrada obteniendo:

A=5

por lo tanto,

\boxed{\mathsf{A=\sqrt{\dfrac{3^{797}}{3^{795}}+ \dfrac{2^{428}}{2^{424}} }=5}}

Otras preguntas