Matemáticas, pregunta formulada por Ara500, hace 6 meses

ayudaaaa plox, a quien lo haga bien les doy corona y corazón es para ahorita

Adjuntos:

otaku83113: una pregunta como pones la foto
Ara500: ah pues le doy en adjuntar y ya
Ara500: yo no te dije nada malo, ademas como voy a saber que tienes 8 años
otaku83113: oki
otaku83113: TE AYUDARE
otaku83113: PERO SOLO ENTENDI LA PRIMERA

Respuestas a la pregunta

Contestado por otaku83113
0

Respuesta:

solo la primera si puedo la segunda tambien

Explicación paso a paso:

1. La longitud del radio es la mitad de la del diámetro. Todos los radios de una circunferencia, un círculo, una esfera y una hiperesfera, respectivamente, poseen la misma longitud. El radio de una esfera: cualquier segmento que une el centro con un punto de su superficie.

2.  LA LINEA RECTA

Es una sucesión infinita de puntos que se extiende

indefinidamente en sus dos sentidos y en una sola dirección;

además una recta genera los siguientes elementos

geométricos:

1. Rayo: Es la parte de la recta que tiene un punto de origen

y es ilimitada en un solo sentido.

2. Semirrecta: Es igual que el rayo, con la única diferencia

de que el punto de origen no pertenece a la semirrecta.

3. Segmento de recta: Es una porción de recta comprendida

entre dos puntos, a los cuales se les denomina extremos

del segmento de recta.

Propiedades del segmento de recta:

a) Longitud de segmento: Es la magnitud de la distancia

que se separa a los extremos de un segmento; la longitud

es además un número real positivo y se expresa en

unidades de longitud.

Notación: AB (se lee longitud de AB)

b) Punto medio de un segmento: Es aquel punto de un

segmento que equidista de sus extremos, es decir la

longitud de un extremo al punto medio es igual a la

longitud del otro extremo al mismo punto,Si AM = a y MB = a ⇒ AM = MB

∴ M: punto medio de AB

c) Operaciones con segmentos: La adición y sustracción

de segmentos se basan en el siguiente axioma: “La suma

de las partes nos da el todo”

EJEMPLOS

1. Sobre una línea recta se considera los puntos

consecutivos A, B, C y D. Luego los puntos medios M y

N de AB y CD respectivamente. Hallar MN si: AC + BD

= 50.

a) 20 b) 25 c)30 d) 40 e) 50.

Resolución:

Dato: M y N son puntos medios de AB y CD.

AM = MB = a, CN = ND = b

Dato: AC + BD = 50

(2a + c) + (c + 2b)= 50

2a + 2c + 2b = 50

2 (a + c + b)= 50

2MN = 50

MN = 25 ; Rpta. B

2. Sobre una recta se ubican los puntos consecutivos A, B,

C y D. Luego los puntos medios M y N de AC y BD

respectivamente. Hallar MN si: AB + CD = 60

a) 20 b) 25 c) 30 d) 40 e) 60

Resolución:

Dato: M y N puntos medios de AC y BD

AM = NC = a, BN = ND = b

Dato: AB + CD = 60

(a + x - b) + (x + b - a) = 60

2x = 60

x = 30

MN = 30 ; Rpta. C

3. En una recta se ubican los puntos consecutivos A, B, C

y D. Si: BC = 4, AD = 10. Calcula la distancia entre los

puntos medios de AB y CD.

Otras preguntas