Matemáticas, pregunta formulada por diegomdd, hace 1 año

AYUDAAA POR FAVOR Dados los intervalos, encuentre la operacion indicada en cada inciso. De su resultado en Notacion de intervalo, notacion constructiva y forma grafica en la recta real: A=[-3,4[ B=]-infinito,2[ C=[-1,3] D=[0,+infinito[ y U = R a) (AuB) - C' b) (BnC)' u (D-A) c) (AuB) u (CnD) - (D' n B) d) (Au(B-C)')' e) (BuD) - (A-C) f) A' n D' g) (AuB) - D h) C n D' i) (B' n D) u A J) (A-B) u (U n D) K) (A-C)' - D L) (A' n D') - B m) ((C' n B') - A)' AYUDA POR FAVOR NECESITO ENTREGARLA HOY EN LA NOCHE


diegomdd: A=[-3,4[ B=]-infinito,2[ C=[-1,3] D=[0,+infinito[ y U = R
a) (AuB) - C'
b) (BnC)' u (D-A)
c) (AuB) u (CnD) - (D' n B)
d) (Au(B-C)')' e) (BuD) - (A-C)
f) A' n D'
g) (AuB) - D
h) C n D'
i) (B' n D) u A
J) (A-B) u (U n D)
K) (A-C)' - D
L) (A' n D') - B
m) ((C' n B') - A)'

Respuestas a la pregunta

Contestado por martinnlove
10

Respuesta:

Explicación paso a paso:

Hola

Aunque presumo que ya los sabes, es bueno recordar que

un intervalo es un conjunto de puntos, por tanto se aplican

las leyes de conjuntos numéricos.

Intervalos

A = [-3 , 4[

B = ]-∞ , 2[

C = [-1 , 3]

D = [0,+∞[    y

U = R = ]-∞ , +∞[

complemento de un conjunto A

A' = U - A

a) (A ∪ B) - C'

A ∪ B = ]-∞ , 4[

C' = U - C = R - C = R - [-1 , 3]

(A ∪ B) - C' = ]- 1 , 3[

b)  (B ∩ C)' ∪ (D - A)

B ∩ C = Ф

(B ∩ C)' = R

D - A = ] 4 , +∞[

(B ∩ C)' ∪ (D - A) = R

c) (A ∪ B) ∪ (C ∩ D) - (D' ∩ B)

A ∪ B = ]-∞ , 4[

C ∩ D = ]0 , 3[

(A ∪ B) ∪ (C ∩ D) = R

D' = R - D = ]-∞ , 0[

D' ∩ B =  ]-∞ , 2[

(A ∪ B) ∪ (C ∩ D) - (D' ∩ B) = R - ]-∞ , 2[

d) (A ∪ (B - C)')'

B - C = ]-∞ , 2[

(B - C)' = R - ]-∞ , 2[

A ∪ (B - C)' = [-3 , +∞[

(A ∪ (B - C)')' = R - [-3 , +∞[

e) (B ∪ D) - (A - C)

B ∪ D = ]-∞ , 2[ ]0 , +∞[

A - C = [-3 , 0[

(B ∪ D) - (A - C) = ]-∞ , -3[ ]0 , +∞[

f) A' ∩ D'

Aplica Ley de De Morgan

(A ∪ B)' = A' ∩ B'

A U B = ]-∞ , 4[

(A ∪ B)' = U - (A ∪ B) = R - (A ∪ B)

A' ∩ D' = R - ]-∞ , 4[

g) (A ∪ B) - D

h) C ∩ D'

i) (B' ∩ D) ∪ A

B ' = R -  ]-∞ , 2[

B' ∩ D = ]-∞ , 2[

(B' ∩ D) ∪ A = [-3 , 4[ -{2} = [-3 , 2[ ∪ ]2 , 4[

j) (A - B) ∪ (U ∩ D)

A - B = ] -2 , -4[

U ∩ D = D = [0 , +∞[

(A - B) ∪ (U ∩ D) = ] -2 , -4[ ∪  [0 , +∞[

k) (A - C)' - D

A - C = [-3 , -1[ ∪ ]3 , 4[

(A - C)' = R - (A - C)' = ]-∞ , -3[ ∪ ]-1 , 3[ ∪ ]4 , +∞[

(A - C)' - D =  ]-∞ , -3[ ∪ ]-1 , 0[

l) (A' ∩ D') - B

A U D = [- 3 , +∞[

Ley de De Morgan  (A' ∩ D') = (A ∪ D)'

(A ∪ D)' = R -  [- 3 , +∞[ = ]-∞ , -3[

(A' ∩ D') - B = ]-3 , -2[

m) ((C' ∩ B') - A)'

C' ∩ B' = (C ∪ B)'

C  ∪ B = ]-∞ , -2[ ∪ [-1 , 3]

(C ∪ B)' = R - (]-∞ , -2[ ∪ [-1 , 3])

(C ∪ B)' = ]-2 , -1[ ∪ [3 , +∞]

(C' ∩ B') - A =

Otras preguntas