Matemáticas, pregunta formulada por jannatfornowp5pr4e, hace 1 año

AYUDAAA NO ENTIENDO NADA

Adjuntos:

Respuestas a la pregunta

Contestado por MaryaleB
0

Estas son las operaciones y las simplificaciones de los ejercicios planteados

6.

a) \frac{\frac{4}{x}-x}{\frac{1}{x}+\frac{1}{2}}=-2\left(x-2\right)

b) \frac{x+2}{\left(x+2\right)^2}\cdot \frac{x^2-4}{x}=\frac{x-2}{x}

7.

a)  \left(\frac{x+y}{x-y}-\frac{x-y}{x+y}\right)\left(\frac{x}{y}-\frac{y}{x}\right)=4

8.

a) \frac{1}{x-1}+\frac{1}{x-3}-\frac{x-1}{x^2-4x+3}=\frac{1}{x-1}

9.

a)\frac{\frac{9+6x+x^2}{9-x^2}\cdot \frac{3x^2-x^3}{3x^2+x^3}}{\frac{\frac{2x-4x}{\frac{3}{4}-\frac{2}{8}}}{\frac{2x^2-8x+8}{x-2}}}=-\frac{x-2}{2x}

Resolución paso a paso

6. Opera y Simplifica

a)  

\left(\frac{4}{x}-x\right)\div \left(\frac{1}{x}+\frac{1}{2}\right)

\left(\frac{4}{x}-x\right)\div \left(\frac{1}{x}+\frac{1}{2}\right)=\frac{\frac{4}{x}-x}{\frac{1}{x}+\frac{1}{2}}

Simplificando Fracción

=\frac{\frac{4}{x}-x}{\frac{2+x}{2x}}=\frac{\frac{4-x^2}{x}}{\frac{2+x}{2x}}

Dividir Fracciones : \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}

=\frac{\left(4-x^2\right)\cdot \:2x}{x\left(2+x\right)}=\frac{\left(4-x^2\right)\cdot \:2}{2+x}

\mathrm{Factorizar}\:2\left(-x^2+4\right)  

2\left(-x^2+4\right)=-2\left(x+2\right)\left(x-2\right)

=-\frac{2\left(x+2\right)\left(x-2\right)}{2+x}

Simplificando

=-2\left(x-2\right)

entonces

\frac{\frac{4}{x}-x}{\frac{1}{x}+\frac{1}{2}}=-2\left(x-2\right)

b)

\frac{x+2}{\left(x+2\right)^2}\cdot \frac{x^2-4}{x}

\frac{x+2}{\left(x+2\right)^2}\cdot \frac{x^2-4}{x}=\frac{1}{x+2}\cdot \frac{x^2-4}{x}

Multiplicacion de Fracciones:\frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d}

=\frac{1\cdot \left(x^2-4\right)}{\left(x+2\right)x}=\frac{x^2-4}{x\left(x+2\right)}\\

\mathrm{Factorizar}\:x^2-4

x^2-4=\left(x+2\right)\left(x-2\right)

=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)x}

Eliminar términos Comunes

=\frac{x-2}{x}

Entonces

\frac{x+2}{\left(x+2\right)^2}\cdot \frac{x^2-4}{x}=\frac{x-2}{x}

7.

a)

\left(\frac{x+y}{\:x-y}-\frac{x-y}{x+y}\right)\cdot \left(\frac{x}{y}-\frac{y}{x}\right)

\mathrm{Simplificar}\:\frac{x+y}{x-y}-\frac{x-y}{x+y}

El mínimo común múltiplo de x-y,\:x+y:\quad \left(x-y\right)\left(x+y\right)

=\frac{\left(x+y\right)^2-\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}

\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=x^2+2xy+y^2-x^2+2xy-y^2\\\\=4xy

=\frac{4xy}{\left(x-y\right)\left(x+y\right)}

=\frac{4xy}{\left(x-y\right)\left(x+y\right)}\left(\frac{x}{y}-\frac{y}{x}\right)

\mathrm{Multiplicar\:fracciones}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}

=\frac{4xy\left(\frac{x}{y}-\frac{y}{x}\right)}{\left(x-y\right)\left(x+y\right)}

=\frac{4\cdot \frac{x^2-y^2}{xy}xy}{\left(x-y\right)\left(x+y\right)}=\frac{4\left(x+y\right)\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}

\frac{4\left(x+y\right)\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{4\left(x-y\right)}{x-y}=4

entonces

\left(\frac{x+y}{x-y}-\frac{x-y}{x+y}\right)\left(\frac{x}{y}-\frac{y}{x}\right)=4

8.

a)

\frac{1}{x-1}+\frac{1}{x-3}-\frac{x-1}{x^2-4x+3}

Simplificando el tercer termino

\frac{x-1}{x^2-4x+3}=\frac{x-1}{\left(x-1\right)\left(x-3\right)}

Eliminando Términos Comunes  

=\frac{x-3}{\left(x-1\right)\left(x-3\right)}+\frac{0}{\left(x-1\right)\left(x-3\right)}

\mathrm{Ya\:que\:los\:denominadores\:son\:iguales,\:combinar\:las\:fracciones}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

=\frac{x-3+0}{\left(x-1\right)\left(x-3\right)}=\frac{x-3}{\left(x-1\right)\left(x-3\right)}

=\frac{x-3}{\left(x-1\right)\left(x-3\right)}

\mathrm{Eliminar\:los\:terminos\:comunes:}\:x-3

=\frac{1}{x-1}

Entonces

\frac{1}{x-1}+\frac{1}{x-3}-\frac{x-1}{x^2-4x+3}=\frac{1}{x-1}

9.

a)

\frac{\frac{9+6x+x^2}{9-x^2}\cdot \frac{3x^2-x^3}{3x^2+x^3}}{\frac{\frac{2x-4x}{\frac{3}{4}-\frac{2}{8}}}{\frac{2x^2-8x+8}{x-2}}}\\\\

=\frac{\frac{x^2+6x+9}{-x^2+9}\cdot \frac{-x^3+3x^2}{x^3+3x^2}}{-\frac{2x\left(x-2\right)}{\left(\frac{3}{4}-\frac{2}{8}\right)\left(2x^2-8x+8\right)}}

Simplificando  

=-\frac{\frac{9+6x+x^2}{9-x^2}\cdot \frac{3x^2-x^3}{3x^2+x^3}}{\frac{2x\left(x-2\right)}{\left(\frac{3}{4}-\frac{2}{8}\right)\left(2x^2-8x+8\right)}}

=-\frac{\frac{9+6x+x^2}{9-x^2}\cdot \frac{3x^2-x^3}{3x^2+x^3}\left(\frac{3}{4}-\frac{2}{8}\right)\left(2x^2-8x+8\right)}{2x\left(x-2\right)}

=-\frac{\left(x-2\right)^2}{2x\left(x-2\right)}

=-\frac{x-2}{2x}

entonces

\frac{\frac{9+6x+x^2}{9-x^2}\cdot \frac{3x^2-x^3}{3x^2+x^3}}{\frac{\frac{2x-4x}{\frac{3}{4}-\frac{2}{8}}}{\frac{2x^2-8x+8}{x-2}}}=-\frac{x-2}{2x}

Otras preguntas