Ayudaa plis es mi examen de admisión
En una urna hay 8 esferas rojas, 7 esferas verdes y 4 azules. ¿Cuál es el mínimo número de esferas que se debe extraer para tener la certeza de haber extraído una de cada color?
Respuestas a la pregunta
Respuesta:
Para calcular la probabilidad de que la primera bola extraida sea blanca utilizamos la deÖniciÛn cl·sica de la probabilidad; es decir, dividimos el n˙mero de casos favorables entre el n˙mero de casos posibles. El n˙mero de casos favorables
es 8, ya que hay 8 bolas blancas; el n˙mero de casos posibles es de 12, el total de bolas en la urna. Entonces
P (primera bola es blanca) = 8
12
=
2
3
Ahora hay que calcular la probabilidad que la segunda bola sea blanca, sabiendo que la primera extraida fue blanca.
Dado que no hay reemplazamiento, al sacar una bola blanca nos quedan en la urna 7 bolas blancas y 4 bolas rojas, asÌ que
ahora la probabilidad de sacar otra vez bola blanca es el n˙mero de casos favorables, 7, entre el n˙mero de casos totales,
11; es decir, la probabilidad es 7=11.
Ahora la deÖniciÛn de la probabilidad condicional nos dice que
P (segunda bola es blanca, sabiendo que la primera es blanca) = P (ambas son blancas)
P (primera bola es blanca)
asÌ que
P (ambas son blancas) = P (primera bola es blanca) P (segunda bola es blanca, sabiendo que la primera es blanca)
y por tanto,
P (ambas son blancas) = 2
3
7
11
=
14
33
= 0:424
Explicación paso a paso: