ayuda xfavor
doy corona
con procedimiento xfavor
Respuestas a la pregunta
Explicación paso a paso:
9) Si: x + x⁻¹ =4. Hallar "x⁴ + x⁻⁴"
Resolvamos:
x + x⁻¹ = 4
(x + x⁻¹)² = (4)²
(x)² + 2(x)(x⁻¹) + (x⁻¹)² = 16
x² + 2(x⁰) + x⁻² = 16
x² + 2(1) + x⁻² = 16
x² + 2 + x⁻² = 16
x² + x⁻² = 16 - 2
x² + x⁻² = 14
Entonces:
x² + x⁻² = 14
(x² + x⁻²)² = (14)²
(x²)² + 2(x²)(x⁻²) + (x⁻²)² = 196
x⁴ + 2(x⁰) + x⁻⁴ = 196
x⁴ + 2(1) + x⁻⁴ = 196
x⁴ + 2 + x⁻⁴ = 196
x⁴ + x⁻⁴ = 196 - 2
x⁴ + x⁻⁴ = 194
Por lo tanto, el valor de "x⁴ + x⁻⁴" es 194
10) Si: x+ y = 4: xy =-2. Hallar "x³ + y³"
Resolvamos:
x + y = 4
(x + y)³ = (4)³
x³ + 3xy(x + y) + y³ = 64
x³ + 3(-2)(4) + y³ = 64
x³ + -24 + y³ = 64
x³ + y³ = 64+24
x³ + y³ = 88
Por lo tanto, el valor de "x³ + y³" es 88
11) Si: x + y =2; xy =-3. Hallar "x³ + y³"
Resolvamos:
x + y = 2
(x + y)³ = (2)³
x³ + 3xy(x + y) + y³ = 8
x³ + 3(-3)(2) + y³ = 8
x³ + -18 + y³ = 8
x³ + y³ = 8+18
x³ + y³ = 26
Por lo tanto, el valor de "x³ + y³" es 26
12) Si: x + x⁻¹ = -2. Hallar "x⁶ + x⁻⁶"
Resolvamos:
x + x⁻¹ = -2
(x + x⁻¹)³ = (-2)³
(x)³ + 3(x)(x⁻¹)(x + x⁻¹) + (x⁻¹)³ = -8
x³ + 3(x⁰)(x + x⁻¹) + x⁻³ = -8
x³ + 3(1)(-2) + x⁻³ = -8
x³ -6 + x⁻³ = -8
x³ + x⁻³ = -8+6
x³ + x⁻³ = -2
Entonces:
x³ + x⁻³ = -2
(x³ + x⁻³)² = (-2)²
(x³)² + 2(x³)(x⁻³) + (x⁻³)² = 4
x⁶ + 2(x⁰) + x⁻⁶ = 4
x⁶ + 2(1) + x⁻⁶ = 4
x⁶ + 2 + x⁻⁶ = 4
x⁶ + x⁻⁶ = 4 - 2
x⁶ + x⁻⁶ = 2
Por lo tanto, el valor de "x⁶ + x⁻⁶" es 2