ayuda por favor urgente alguien ayuda por favor urgente alguien
Respuestas a la pregunta
Respuesta:
2.1 Dos problemas
con el mismo tema
2.2 La derivada
2.3 Reglas para
encontrar derivadas
2.4 Derivadas
de funciones
trigonométricas
2.5 La regla de la
cadena
feralepat1987 avatar
2.6 Derivadas
de orden superior
2.7 Derivación
implícita
2.8 Tasas de cambio
relacionadas
2.9 Diferenciales y
aproximaciones
2.10 Repaso del capítulo
2.1
Dos problemas con el mismo tema
Nuestro primer problema es muy antiguo; se remonta a la época del gran
1332020050 avatar
bro pero no puedes en foto
1332020050 avatar
en examen quieren numeros no asi teroria
feralepat1987 avatar
científico
griego Arquímedes (287-212 A. C.). Nos referimos al problema de la pendiente de la recta
tangente. Nuestro segundo problema es más reciente. Surgió con los intentos de Kepler
(1571-1630), Galileo (1564-1642), Newton (1642-1727) y otros para describir la velocidad de un cuerpo en movimiento. Es el problema de la velocidad instantánea.
Los dos problemas, uno geométrico y el otro mecánico, parecen no estar muy relacionados. En este caso, las apariencias engañan. Los dos
Explicación:
Respuesta:
2.1 Dos problemas
con el mismo tema
2.2 La derivada
2.3 Reglas para
encontrar derivadas
2.4 Derivadas
de funciones
trigonométricas
2.5 La regla de la
cadena
feralepat1987 avatar
2.6 Derivadas
de orden superior
2.7 Derivación
implícita
2.8 Tasas de cambio
relacionadas
2.9 Diferenciales y
aproximaciones
2.10 Repaso del capítulo
2.1
Dos problemas con el mismo tema
Nuestro primer problema es muy antiguo; se remonta a la época del gran
1332020050 avatar
bro pero no puedes en foto
1332020050 avatar
en examen quieren numeros no asi teroria
científico
griego Arquímedes (287-212 A. C.). Nos referimos al problema de la pendiente de la recta
tangente. Nuestro segundo problema es más reciente. Surgió con los intentos de Kepler
(1571-1630), Galileo (1564-1642), Newton (1642-1727) y otros para describir la velocidad de un cuerpo en movimiento. Es el problema de la velocidad instantánea.