Ayuda con Ley de Senos y Cosenas
Respuestas a la pregunta
Respuesta la ley de coseno se aplica cuando se conocen 2 lados y un angulo
Explicación paso a paso:
Ley de senos:
a/seno 60 b/seno 80
a= (sen 60) (20cm) / sen 80 =
Explicación paso a paso:
En el primer triángulo calcularemos el valor del último ángulo al que se le opone el lado que mide 20
Dado que la suma de los ángulos interiores de un triángulo es de 180° llamaremos y al último ángulo:
60° + 80° + y = 180°
140° + y = 180°
y = 40°
Por lo que aplicando la ley de senos tendremos:
20/sen(40°) = x/sen(60°)
Multiplicamos de forma cruzada
20×sen(60°) = x×sen(40°)
[20×sen(60°)]/sen(40°) = x
26.94 = x
En el segundo triángulo volvemos a aplicar la ley de senos:
5.78/sen(x) = 10/sen(60°)
Multiplicamos de forma cruzada
5.78×sen(60°) = 10×sen(x)
[5.78×sen(60°)]/10 = sen(x)
Aquí aplicamos la función inversa del seno, arcoseno o seno^-1 para obtener x
arcoseno{[5.78×sen(60°)]/10} = x
30° 2' 14" = x
Para el último triángulo aplicamos la ley decosenos correspondientes al lado x
x² = 21² + 17² - 2×21×17×cos(100°)
x² = 441 + 289 - 714×cos(100°)
x² = 730 - 714×(-0.173648)
x² = 730 + 123.9848
x² = 853.9848
Aplicando raíces cuadradas a ambos miembros tendremos el valor de x
x = 29.22302