Matemáticas, pregunta formulada por vfrancorg9, hace 3 meses

Ayuda :((((((((((((((

Adjuntos:

Respuestas a la pregunta

Contestado por narcisadelpilarviter
0

Respuesta:

solo tienes que calcular y te sale la respuesta

Contestado por tiagoarrambide2
0

Respuesta:

Si dibujamos un triángulo equilátero ABC, cada uno de sus tres ángulos mide 60^{o} y, si trazamos una altura del mismo, h, el ángulo del vértice A por el que la hemos trazado queda dividido en dos iguales de 30^{o} cada uno. Recurriendo al Teorema de Pitágoras, tenemos que la altura es:

 

\displaystyle h=\sqrt{I^{2}-\left ( \frac{I}{2} \right )^{2}}=\sqrt{\frac{3I^{2}}{4}}=\frac{\sqrt{3}}{2}I

 

representacion gráfica triángulo

 

 

\displaystyle sen \ 30^{o}=\frac{\frac{I}{2}}{I}=\frac{1}{2} \ \ \ \ \ \ \ \ \ \ sen \ 60^{o}=\frac{\frac{\sqrt{3}}{2}}{I}=\frac{\sqrt{3}}{2}

\displaystyle cos \ 30^{o}=\frac{\frac{\sqrt{3}}{2}I}{I}=\frac{\sqrt{3}}{2} \ \ \ \ \ \ \ \ \ \ cos \ 60^{o}=\frac{\frac{I}{2}}{I}=\frac{1}{2}

\displaystyle tg \ 30^{o}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \ \ \ \ \ \ \ \ \ \ tg \ 60^{o}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}

Explicación paso a paso:

Otras preguntas