Matemáticas, pregunta formulada por lovelycomplex1p7ypo8, hace 1 año

ayidaa .................

Adjuntos:

Respuestas a la pregunta

Contestado por LuffyPeru
7

1.- Reducir : \frac{\left(6+\frac{1}{2}\right)^4\cdot \left(2-\frac{1}{6}\right)^2}{\left(2+\frac{1}{6}\right)^4\cdot \left(6-\frac{1}{2}\right)^2}

* \left(2+\frac{1}{6}\right)^4=\left(\frac{13}{6}\right)^4=\frac{13^4}{6^4}

* \left(6-\frac{1}{2}\right)^2=\left(\frac{11}{2}\right)^2=\frac{11^2}{2^2}

*\left(6+\frac{1}{2}\right)^4=\left(\frac{13}{2}\right)^4=\frac{13^4}{2^4}

*\left(2-\frac{1}{6}\right)^2= \left(\frac{11}{6}\right)^2=\frac{11^2}{6^2}

\frac{\frac{13^4}{2^4}\cdot \frac{11^2}{6^2}}{\frac{13^4}{6^4}\cdot \frac{11^2}{2^2}}

\frac{\frac{3455881}{576}}{\frac{3455881}{5184}}

\frac{5184}{576}=9


2.- Reducir:P = 64^{-9^{-4^{-2^{-1}}}}

4^{-2^{-1}}=\frac{1}{2}

9^{-\frac{1}{2}}

9^{-\frac{1}{2}}=\frac{1}{\sqrt{9}}=\frac{1}{3}

P= 64^{-\frac{1}{3}}

64^{-\frac{1}{3}}=\frac{1}{\sqrt[3]{64}}=\frac{1}{4}


Simplificar: \frac{2^{m+1}\cdot 4^{m+2n}}{8^{m-1}\cdot 16^{^{n+1}}}

\mathrm{Factorizar}\:8^{m-1}:\quad 2^{3\left(m-1\right)}

\mathrm{Factorizar}\:4^{m+2n}:\quad 2^{2\left(m+2n\right)}

\mathrm{Factorizar}\:16^{n+1}:\quad 2^{4\left(n+1\right)}

=\frac{2^{2\left(m+2n\right)}\cdot \:2^{m+1}}{2^{3\left(m-1\right)}\cdot \:2^{4\left(n+1\right)}}

\mathrm{Simplificar}

\frac{2^{m+1+2\left(m+2n\right)}}{2^{3\left(m-1\right)+4\left(n+1\right)}}

\mathrm{Eliminar\:los\:terminos\:comunes:}\:2^{m+1+2\left(m+2n\right)}

1



Otras preguntas