Armando quiere dividir su terreno en jardines cuadrados. Si su terreno es de 256 m de
ancho y 192 m de alto, ¿cómo podría dividir los jardines sin que le sobre espacio con el
Resultado
mayor espacio por sección?
Respuestas a la pregunta
Respuesta:
3: divisores de 256 : 1,2,4,8,16,32,64,128. divisores de 192:1,2,3,4,6,8,12,6,24,32,48,64,96,192 así que la respuesta es 64
espacio con el mayor espacio por sección?
La división del terreno en jardines cuadrados para obtener el mayor espacio sin que sobre terreno es:
12 cuadrados de 64 m de lado.
¿Qué es máximo común divisor?
Es el mayor número que es divisor, una cifra o número.
Se obtiene MCD, descomponiendo en factores primos a los números y tomando a solo los comunes y multiplicándolos entre sí.
¿Qué son los números primos?
Son los números que tienen únicamente dos divisores posibles, el 1 y el mismo número. Además, son mayores a 1.
Números primos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97
¿Cómo podría dividir los jardines sin que le sobre espacio con el resultado mayor espacio por sección?
El MCD es valor del lado del terreno cuadrado que cumple las condiciones.
Descomponer las dimensiones del terreno en factores primos.
192 | 2 256 | 2
96 | 2 128 | 2
48 | 2 64 | 2
24 | 2 32 | 2
12 | 2 16 | 2
6 | 2 8 | 2
3 | 3 4 | 2
1 2 | 2
1
MCD = 2⁶
MCD = 64 m
Calcular el área del terreno;
A = 256 × 192
A = 49152 m²
Ac = (64)²
Ac = 4096 m²
Cantidad de cuadrados es:
A/Ac = 49152/4096 = 12
Puedes ver más sobre máximo común divisor aquí: https://brainly.lat/tarea/290128
#SPJ2