Matemáticas, pregunta formulada por ester1222222, hace 1 año

amigos Buenas tardes Me pueden ayudar con estos problema de álgebra por favor que no lo entiendo muy bien te lo pido de corazon soy nueva en esta aplicación porfavor

Adjuntos:

Klyffor: E 4 o el 5?
ester1222222: me puede ayudar por favor sis q puede con los dos
ester1222222: con 4 y 5
ester1222222: se lo agradecería mucho
ester1222222: porfavor
Klyffor: Ya esta
ester1222222: por supuesto q si muchas gracias de verdad
ester1222222: le agradezco mucho

Respuestas a la pregunta

Contestado por Klyffor
1

4.Bueno mas que todo es elegir bien los productos que den algo parecido a la identidad que nos dan


Los que son convenientes son:


(a - 2)(a + 7) ---> a² + 7a - 2a - 14 ---> a² + 5a - 14


(a - 1)(a + 6) ---> a² + 6a - a - 6 ---> a² + 5a - 6


Bueno vamos a evauar lo que nos piden:


M = (a - 2)(a - 1)(a + 6)(a + 7)


M = (a² + 5a - 14)(a² + 5a - 6)


M = (3 - 14)(3 - 6)


M = (-11)(-3)


M = 33


5.Halle el valor reducido de:


B = √[(x² + 2x - 4)² - x(x - 2)(x + 4)(x+2)]


B = √[(x² + 2x)² - 8(x² + 2x) + 16 - (x²+2x)(x - 2)(x + 4)]


B = √[(x² + 2x)(x² + 2x - 8 - (x - 2)(x + 4)) + 16 ]


B = √[(x² + 2x)(x² + 2x - 8 - (x² - 2x + 4x - 8)) + 16 ]


B = √[(x² + 2x)(x² + 2x - 8 - (x² + 2x - 8)) + 16 ]


B = √[(x² + 2x)(x² + 2x - 8 - x² - 2x + 8) + 16 ]


B = √[(x² + 2x)(0) + 16 ]


B = √16


B = 4














Espero te sea de utilidad, mucho gusto y hasta pronto


"Difunde la cultura"



ester1222222: por supuesto q si gracias
Otras preguntas