Baldor, pregunta formulada por mar3797, hace 16 días

Alguien me podría ayudar porfavor, no quiero que me regañen y lo agradecería mucho

Adjuntos:

Respuestas a la pregunta

Contestado por darwinstevenva
0

Respuesta:

1 ) f(x) = 5

f'(x) = d/dx[(5)]

f'(x) = 0 ====== > Respuesta

2 ) f(x) = -7x³+21x²-1

f'(x) = d/dx[(-7x³+21x²-1)]

f'(x) = d/dx[(-7x³)]+d/dx[(21x²)]-d/dx[(1)]

f'(x) = -7×d/dx[(x³)]+21×d/dx[(x²)]-0

f'(x) = -7(3x²)+21(2x)

f'(x) = -21x²+42x ====== > Respuesta

3 ) f(x) = 2x+1

f'(x) = d/dx[(2x+1)]

f'(x) = d/dx[(2x)]+d/dx[(1)]

f'(x) = 2×d/dx[(x)]+0

f'(x) = 2(1)

f'(x) = 2 ===== > Respuesta

4 ) f(x) = x^(-2)+2

f'(x) = d/dx[(x^(-2)+2)]

f'(x) = d/dx[(x^(-2))]+d/dx[(2)]

f'(x) = -2((x)^(-2-1))+0

f'(x) = (-2)/x³ ======= > Respuesta

5 ) f(x) = 2x²

f'(x) = d/dx[(2x²)]

f'(x) = 2×d/dx[(x²)]

f'(x) = 2(2x)

f'(x) = 4x ===== > Respuesta

6 ) f(x) = 10x

f'(x) = d/dx[(10x)]

f'(x) = 10×d/dx[(x)]

f'(x) = 10×1

f'(x) = 10

7 ) f(x) = (4x³+3x)(2x²+4x)

f'(x) = d/dx[(4x³+3x)](2x²+4x)+d/dx[(2x²+4x)](4x³+3x)

f'(x) = ((d/dx[(4x³)]+d/dx[(3x)])(2x²+4x)+((d/dx[(2x²)]+d/dx[(4x)])(4x³+3x)

f'(x) = (4×d/dx[(x³)]+3×d/dx[(x)])(2x²+4x)+(2×d/dx[(x²)]+4×d/dx[(x)])(4x³+3x)

f'(x) = (4(3x²)+3(1))(2x²+4x)+(2×2x+4(1))(4x³+3x)

f'(x) = (12x²+3)(2x²+4x)+(4x+4)(4x³+3x)

f'(x) = (12x²(2x²+4x)+3(2x²+4x))+(4x(4x³+3x))+(4(4x³+3x))

f'(x) = (24x⁴+48x³+6x²+12x)+(16x⁴+12x²)+(16x³+12x)

f'(x) = (24+16)x⁴+(48+16)x³+(6+12)x²+(12+12)x

f'(x) = 40x⁴+64x³+18x²+24x ===== > Respuesta

8 ) f(x) = (56x³+18x²+5x)/(7x+4)

f'(x) = d/dx [(56x³+18x²+5x)/(7x+4)]

f'(x) = (((d/dx[(56x³)]+d/dx[(18x²)]+d/dx[(5x)])(7x+4)-((d/dx[(7x+4)])(56x³+18x²+5x)))/(7x+4)²

f'(x) = ((56×d/dx[(x³)]+18×d/dx[(x²)]+5×d/dx[(x)])(7x+4)-(d/dx[(7x)]+d/dx[(4)])(56x³+18x²+5x))/(49x²+56x+16)

f'(x) = ((56(3x²)+18(2x)+5)(7x+4)-(7×d/dx[(x)]+0)(56x³+18x²+5x))/(49x²+56x+16)

f'(x) = ((168x²+36x+5)(7x+4)-(7)(56x³+18x²+5x))/(49x²+56x+16)

f'(x) = (7x(168x²+36x+5)+4(168x²+36x+5)-(392x³+126x²+35x))/(49x²+56x+16)

f'(x) = ((1168x³+252x²+35x+672x²+144x+20-392x³-126x²-35x))/(49x²+56x+16)

f'(x) = ((1168-392)x³+(252+672-126)x²+(35+144-35)x+20))/(49x²+56x+16)

f'(x) = ( 776x³+798x²+20) /(49x²+56x+16) ====== > Respuesta .

Otras preguntas