al construir un gráfico m=f(v) con la masa y el volumen de varia porciones de una misma sustancia, obtenemos una recta que no pasa por el origen?
Respuestas a la pregunta
Contestado por
56
La función:
f(v) = m
Es una función lineal identidad.
Esta función presenta dos variables:
m: masa ⇒ variable independiente
v: volumen ⇒ variable dependiente
Se explica en el sentido de que el volumen dependerá su cambio en la variación que tenga la masa.
Al ser una recta identidad, significa que esta pasa por el origen y los valores de m, serán iguales a los valores de f(v). Es decir, la proporción es a 1 igual que su pendiente respectiva.
Por ejemplo:
m = 1 kg
f(v) = 1 m^3
Cabe resaltar, que la función no está expresada en valores de volumen, lo que significa que está omnipresente.
Recuerda marcar Mejor Respuesta si te gustó
f(v) = m
Es una función lineal identidad.
Esta función presenta dos variables:
m: masa ⇒ variable independiente
v: volumen ⇒ variable dependiente
Se explica en el sentido de que el volumen dependerá su cambio en la variación que tenga la masa.
Al ser una recta identidad, significa que esta pasa por el origen y los valores de m, serán iguales a los valores de f(v). Es decir, la proporción es a 1 igual que su pendiente respectiva.
Por ejemplo:
m = 1 kg
f(v) = 1 m^3
Cabe resaltar, que la función no está expresada en valores de volumen, lo que significa que está omnipresente.
Recuerda marcar Mejor Respuesta si te gustó
Contestado por
11
Si construimos el gráfico de la masa respecto al volumen de varias porciones de una misma sustancia entonces podemos decir que la recta SI pasará por el origen. La función tendrá la forma m = f(v).
¿Por qué pasará por el origen? Bueno, el origen viene siendo el punto (0,0), entonces si un cuerpo no tiene masa entonces este no tendrá volumen, por ello se cumple que esta pasará por el origen. Es importante mencionar que la densidad es la que relaciona la masa con el volumen.
Mira más sobre esto en https://brainly.lat/tarea/1139210.
Adjuntos:
Otras preguntas