Matemáticas, pregunta formulada por marimunerau, hace 2 meses

A² + 3a + 2 | a + 1
Es una división de polinomios, necesito el procedimiento completo, por favor ayudenme

Respuestas a la pregunta

Contestado por matiastoledop2927
1

Respuesta:División de un polinomio  por un número

Cuando dividimos un polinomio por un número, el resultado es otro polinomio que cumple las siguientes características :

El polinomio resultante es del mismo grado que el polinomio que fue dividido.

Sus coeficientes resultan de dividir cada uno de los coeficientes del polinomio entre el número

Se dejan las mismas partes literales.

Ejemplos:

\displaystyle \frac{2x^3 - 4x^2 + 6x - 2}{2} =

\displaystyle \frac{2x^3}{2} - \frac{4x^2 }{2} +\frac{6x}{2} - \frac{2}{2} =

\displaystyle  x^3 - 2x^2 + 3x - 1

\displaystyle \frac{6x^3 - 3x^2 + 9x - 4}{3} =

\displaystyle \frac{6x^3}{3} - \frac{3x^2 }{3} +\frac{9x}{3} - \frac{4}{3} =

\displaystyle 2x^3 - x^2 + 3x - \frac{4}{3}

División de un polinomio por un monomio

En la división de un polinomio  por un monomio se divide cada uno de los monomios que forman el polinomio por el monomio, hasta que el grado del dividendo sea menor que el grado del divisor.

Ejemplos:

\displaystyle \frac{2x^4 - 4x^3 + 8x^2 - 12x}{2x} =

\displaystyle \frac{2x^4}{2x} - \frac{4x^3 }{2x} +\frac{8x^2}{2x} - \frac{12x}{2x}=

\displaystyle x^{3}-2x^{2}+4x -6

\displaystyle \frac{2x^6 - 4x^4 + x^2 }{2x^2} =

\displaystyle \frac{2x^6}{2x^2} - \frac{4x^4 }{2x^2} +\frac{x^2 }{2x^2} =

\displaystyle x^4 - 2x^2 + \frac{1}{2}

División de un polinomio por un polinomio

Para explicar la división de polinomios nos valdremos de un ejemplo práctico con los polinomios:

\displaystyle P\left ( x \right ) = x^{5}+2x^{3} - x -8

\displaystyle Q\left ( x \right ) = x^{2}-2x +1

\displaystyle \frac{P(x)}{ Q(x)}

A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan, es decir, en esta caso dejamos el espacio para el elemento de cuarto grado y otro espacio para el elemento de segundo grado.

x^5 \ \ \ \ \ \ \ \ \ \ +2x^3 \ \ \ \ \ \ \ \ \ \ -x-8 \ \ \ \ \ \ \ \ \ \  dividido \ \  por \ \ \ \ \ \ \ \ \ \  x^2-2x + 1

A la derecha situamos el divisor dentro de una caja.

Dividimos el primer monomio del dividendo entre el primer monomio del divisor.

\displaystyle \frac{x^5}{ x^2 }= x^3

Multiplicamos cada término del polinomio divisor por el resultado anterior y lo restamos del polinomio dividendo:

Es decir :  \displaystyle (x^3)(x^2-2x+1) = x^5-2x^4+x^3

Recordemos que se va a restar al polinomio, así que debemos colocarlo con signo opuesto:

\displaystyle -x^5+2x^4-x^3

División de polinomios , primer termino algebraico

Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor.

\displaystyle \frac{2x^4}{x^2} = 2x^2

Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.

\displaystyle (2x^2)(x^2-2x+1)= 2x^4-4x^3+2x^2

Recordemos que se va a restar al polinomio, así que debemos colocarlo con signo opuesto:

\displaystyle -2x^4+4x^3-2x^2

División de polinomios , segundo termino algebraico

Procedemos igual que antes.

\displaystyle \frac{5x^3}{x^2}= 5x

Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.

\displaystyle (5x)(x^2-2x+1)= 5x^3-10x^2+5x

Recordemos que se va a restar al polinomio, así que debemos colocarlo con signo opuesto:

\displaystyle -5x^3+10x^2-5x

División de polinomios , tercer termino algebraico

Volvemos a hacer las mismas operaciones.

\displaystyle \frac{8x^2}{x^2}= 8

Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.

\displaystyle (8)(x^2-2x+1)= 8x^2-16x+8

Recordemos que se va a restar al polinomio, así que debemos colocarlo con signo opuesto:

\displaystyle -8x^2+16x-8

Resultado de la división de polinomios

La división concluye aquí, ya que 10x-16 tiene menor grado que el divisor.

Cociente o resultado de la división:  \displaystyle x^3+2x^2+5x+8

Resto o residuo: \displaystyle 10x - 16

Explicación paso a paso:


matiastoledop2927: 10x - 16
Contestado por gaeltalavera698
0

Respuesta:

a+2

Explicación paso a paso:

  \frac{ {a}^{2} + 3a + 2 }{a + 1}  =  \frac{(a + 2)(a + 1)}{a + 1}  = a + 2

Tenemos que factorizar la parte de arriba. Existen varios métodos pero en este caso lo haremos por factor común. Debemos conocer el producto notable del factor común que dice así: el cuadrado del término común más menos la suma aritmética de los no comunes por el común, más menos el producto de los no comunes.

En español, tenemos que hacer lo siguiente: abrir dos paréntesis y colocar una a en cada uno, luego tenemos que encontrar dos números que sumados den el término de en medio, es decir tres, y multiplicados den el último término es decir dos. Esos números son 1 y 2 porque uno más dos es tres y uno por dos es dos.

Colocamos cada uno de ellos en los paréntesis y observamos que se repite un término arriba y abajo que es a más uno. Lo podemos eliminar y queda solo a más dos.

Otras preguntas