A_y=2X2+4x-1
\A=2
\B=4
\C=1
Respuestas a la pregunta
Respuesta:
holi
Explicación paso a paso:
De un paralelogramo ABCD conocemos A(1,3pppp), B(5,1), C(-2,0). Halla las coordenadas del vértice D.
Solución
3Clasificar el triángulo determinado por los puntos: A(6,0), B(3,0) y C(6,3)
Solución
4Hallar la pendiente y la ordenada en el origen de la recta 3x+2y-7=0.
Solución
5 Estudiar la posición relativa de las rectas de ecuaciones:
a2x+3y-4=0
b4x+6y-8=0
c2x+3y+9=0
d3x-2y-9=0
Solución
6Hallar la ecuación de la recta r, que pasa A(1, 5), y es paralela a la recta s=2x+y+2=0.
Solución
7Se tiene el cuadrilátero ABCD cuyos vértices son A(3, 0), B(1, 4), C(-3, 2) y D(-1, -2). Comprueba que es un paralelogramo y determina su centro.
Solución
8Hallar la ecuación de la recta que pasa por el punto (2, -3) y es paralela a la recta que une los puntos (4, 1) y (-2, 2).
Solución
9Los puntos A(-1, 3) y B(3, -3), son vértices de un triángulo isósceles ABC que tiene su vértice C en la recta 2x - 4y + 3 = 0 siendo AC y BC los lados iguales. Calcular las coordenadas del vértice C.
Solución
10La recta r\equiv 3x+ny-7=0 pasa por el punto A(3, 2) y es paralela a la recta s\equiv mx+2y-13=0. Calcula m y n.
Solución
11Dado el triángulo ABC, de coordenadas A(0, 0), B(4, 0) y C(4, 4); calcula la ecuación de la mediana que pasa por el vértice C.
Solución
12 De un paralelogramo se conoce un vértice, A(8, 0), y el punto de corte de las dos diagonales, Q(6, 2). También sabemos que otro vértice se encuentra en el origen de coordenadas. Calcular:
aLos otros vértices.
bLas ecuaciones de las diagonales.
cLa longitud de las diagonales.