A) x+6y=-2
X-3y=1
B) 5x+y=8
2x-y=-1
C) 4x-5y=-2
3x+2y=10
carolina4592oz44kd:
Método de igualación
Respuestas a la pregunta
Contestado por
0
Correo electrónicoEn este artículo, resolveremos sistemas de ecuaciones lineales con el método de eliminación. Primero, necesitamos entender que es correcto sumar ecuaciones una con otra.Idea clave: siempre que tenemos dos ecuaciones verdaderas, podemos sumarlas y restarlas para construir otra ecuación verdadera.Por ejemplo, aquí hay dos ecuaciones verdaderas muy básicas:2 = 22=22, equals, 2
5 = 55=55, equals, 5Podemos sumarlas para construir otra ecuación verdadera:2+ 57=2=5=7O podemos restarlas para construir otra ecuación verdadera:2− 5−3=2=5=−3Aquí hay otro ejemplo con ecuaciones más complicadas:2x+3+ 4x+16x+4=7=9=16Muy bien. Ahora que hemos visto que es correcto sumar o restar ecuaciones, podemos resolver sistemas de ecuaciones por medio del método de eliminación.Resolver un sistema de ecuaciones por medio del método de eliminaciónComo ejemplo, resolveremos el siguiente sistema de ecuaciones:x + 3y = 8~~~~~~~~ \gray{\text{Ecuación 1.}}x+3y=8 Ecuación 1.4x - 3y = 17~~~~~~~~\gray{\text{Ecuación 2.}}4x−3y=17 Ecuación 2.Lo difícil es que hay dos variables, xxx y yyy. Si tan solo nos pudiéramos deshacer de una de ellas...¡Aquí hay una idea! Sumemos las ecuaciones para cancelar la variable yyy:x+3y+ 4x−3y5x+0=8=17=25¡Es brillante! Ahora tenemos una ecuación que solo tiene la variable xxx, y que sabemos cómo resolver:5x+05x x=25=25=5Divide cada lado entre 5.¡Muy bien! Ahora usemos la primera ecuación para encontrar yyy cuando xxx es igual a 555:\begin{aligned} \blueD x + 3y &= 8&\gray{\text{Ecuación 1.}} \\\\ \blueD 5 + 3y &= 8 &\gray{\text{Sustituye 5 en vez de x.}}\\\\ 3y &= 3 &\gray{\text{Resta 5 a cada lado.}}\\\\ \greenD y &\greenD = \greenD 1&\gray{\text{Divide cada lado entre 3.}}\end{aligned}x+3y5+3y3yy=8=8=3=1Ecuación 1.Sustituye 5 en vez de x.Resta 5 a cada lado.Divide cada lado entre 3.¡De lujo! Entonces la solución del sistema de ecuaciones es (\blueD5, \greenD{1})(5,1)left parenthesis, start color blueD, 5, end color blueD, comma, start color greenD, 1, end color greenD, right parenthesis. [¡Verifiquemos la solución con las ecuaciones originales!]x+3y5+3(1)8=8=?8=8Sustituye x = 5 y y = 1.¡Sí!4x−3y4(5)−3(1)17=17=?17=17Sustituye x = 5 y y = 1.¡Sí!(\blueD5, \greenD{1})left parenthesis, start color blueD, 5, end color blueD, comma, start color greenD, 1, end color greenD, right parenthesisUtiliza el método de eliminación para resolver el siguiente sistema de ecuaciones.4y - 2x = 44y−2x=44, y, minus, 2, x, equals, 45y + 2x = 235y+2x=23
5 = 55=55, equals, 5Podemos sumarlas para construir otra ecuación verdadera:2+ 57=2=5=7O podemos restarlas para construir otra ecuación verdadera:2− 5−3=2=5=−3Aquí hay otro ejemplo con ecuaciones más complicadas:2x+3+ 4x+16x+4=7=9=16Muy bien. Ahora que hemos visto que es correcto sumar o restar ecuaciones, podemos resolver sistemas de ecuaciones por medio del método de eliminación.Resolver un sistema de ecuaciones por medio del método de eliminaciónComo ejemplo, resolveremos el siguiente sistema de ecuaciones:x + 3y = 8~~~~~~~~ \gray{\text{Ecuación 1.}}x+3y=8 Ecuación 1.4x - 3y = 17~~~~~~~~\gray{\text{Ecuación 2.}}4x−3y=17 Ecuación 2.Lo difícil es que hay dos variables, xxx y yyy. Si tan solo nos pudiéramos deshacer de una de ellas...¡Aquí hay una idea! Sumemos las ecuaciones para cancelar la variable yyy:x+3y+ 4x−3y5x+0=8=17=25¡Es brillante! Ahora tenemos una ecuación que solo tiene la variable xxx, y que sabemos cómo resolver:5x+05x x=25=25=5Divide cada lado entre 5.¡Muy bien! Ahora usemos la primera ecuación para encontrar yyy cuando xxx es igual a 555:\begin{aligned} \blueD x + 3y &= 8&\gray{\text{Ecuación 1.}} \\\\ \blueD 5 + 3y &= 8 &\gray{\text{Sustituye 5 en vez de x.}}\\\\ 3y &= 3 &\gray{\text{Resta 5 a cada lado.}}\\\\ \greenD y &\greenD = \greenD 1&\gray{\text{Divide cada lado entre 3.}}\end{aligned}x+3y5+3y3yy=8=8=3=1Ecuación 1.Sustituye 5 en vez de x.Resta 5 a cada lado.Divide cada lado entre 3.¡De lujo! Entonces la solución del sistema de ecuaciones es (\blueD5, \greenD{1})(5,1)left parenthesis, start color blueD, 5, end color blueD, comma, start color greenD, 1, end color greenD, right parenthesis. [¡Verifiquemos la solución con las ecuaciones originales!]x+3y5+3(1)8=8=?8=8Sustituye x = 5 y y = 1.¡Sí!4x−3y4(5)−3(1)17=17=?17=17Sustituye x = 5 y y = 1.¡Sí!(\blueD5, \greenD{1})left parenthesis, start color blueD, 5, end color blueD, comma, start color greenD, 1, end color greenD, right parenthesisUtiliza el método de eliminación para resolver el siguiente sistema de ecuaciones.4y - 2x = 44y−2x=44, y, minus, 2, x, equals, 45y + 2x = 235y+2x=23
Otras preguntas
Castellano,
hace 8 meses
Física,
hace 8 meses
Informática,
hace 8 meses
Matemáticas,
hace 1 año
Matemáticas,
hace 1 año
Ciencias Sociales,
hace 1 año